SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code : SIGNALS AND SYSTEMS(18EC403)
Year \& Sem: II B.Tech \& II Sem

Course \& Branch: B.Tech - EEE
Regulation: R18

UNIT -I

INTRODUCTION TO SIGNALS AND SYSTEMS

SHORT ANSWER QUESTIONS (2 MARKS)

1. Define a Signal. What is the relation between impulse, step, ramp and parabolic signals?
[L1][CO1][2M]
2. How are the signals are classified?
[L1][CO1][2M]
3. Define Unit impulse and Unit step Signals.
[L1][CO1][2M]
4. Distinguish between periodic and non-periodic signals
[L4][CO1][2M]
5. Distinguish causal and anti-causal signals.
[L4][CO1][2M]
6. Define Linear and Non-Linear System
[L 1$][\mathrm{CO} 1][2 \mathrm{M}]$
7. Define time-variant and time-invariant systems.
[L1][CO1][2M]
8. How are systems classified?
[L1][CO1][2M]
9. Define stable and unstable systems.
[L1][CO1][2M]
10. Define causal and non-causal systems.
[L1][CO1][2M]

LONG ANSWER OUESTIONS (10 MARKS)

1. Define various elementary signals in continuous time and discrete time and indicate them graphically
[L1][CO1][10M]
2. What are the basic operations on signals? Illustrate with an example.
[L1][CO1][10M]
3. Explain the classification of signals in both continuous time and discrete time with suitable examples.
[L2][CO1][10M]
4.(a) Find which of the signals are causal or non-causal.
[L1][CO1][05M]
(i) $x(t)=e^{2 t} u(t-1)$
(ii) $x(t)=3 \operatorname{sinc} 2 t$
(iii) $\mathrm{x}(\mathrm{n})=\mathrm{u}(\mathrm{n}+4)-\mathrm{u}(\mathrm{n}-2)$
(iv) $\mathrm{x}(\mathrm{t})=\mathrm{u}(-\mathrm{n})$
(b) Sketch the following signals
[L1][CO1][05M]
(i) $2 u(t+2)-2 u(t-3)$
(ii) $u(t+4) u(-t+4)$
(iii) $r(t)-r(t-1)-r(t-3)-r(t-4)$
(iv) $\pi(\mathrm{t}-2)$
4. Find whether the following signals are periodic or not? If periodic determine the fundamental Period
(a) $\sin 12 \pi t$
(b) $3 \sin 200 \pi t+4 \cos 100 t$
(c) $\sin 10 \pi t+\cos 20 \pi t$
(d) $\sin (10 t+1)-2 \cos (5 t-2)$
(e) $\mathrm{e}^{\mathrm{j} 4 \pi \mathrm{t}}$
[L1][CO1][10M]
5. (a) Find the even and odd components of the following signals
[L1][CO1][05M]
(i) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{\mathrm{j} 2 \mathrm{t}}$
(ii) $x(t)=\left(1+t^{2}+t^{3}\right) \cos ^{2} 10 t$
(iii) $x(n)=\{-3,1,2,-4,2\}$
(iv) $x(n)=\{5,4,3,2,1\}$
(b)Determine whether the following signals are energy signals or power signals. Calculate their energy or power?
[L1][CO1][05M]
(i) $\mathrm{x}(\mathrm{t})=8 \cos 4 \mathrm{t} \cos 6 \mathrm{t}$
(ii) $\sin ^{2} \omega_{0} t$
(iii) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{\mathrm{j}[3 t+(\pi / 2)]}$
(iv) $x(n)=(1 / 2)^{n} u(n)$
6. Define a system. How are systems classified? Define each one of them.
[L4][CO1][10M]
7. Check whether the following system is
[L1][CO1][10M]
(a) Static or dynamic
(b) linear or non- linear
(c) Causal or non- causal
(d) Time invariant or time variant

$$
\begin{aligned}
& \text { (i) } \mathrm{d}^{3} y(\mathrm{t}) / \mathrm{dt}^{3}+2 \mathrm{~d}^{2} \mathrm{y}(\mathrm{t}) / \mathrm{dt}{ }^{2}+4 \mathrm{dy}(\mathrm{t}) / \mathrm{dt}+3 \mathrm{y}^{2}(\mathrm{t})=\mathrm{x}(\mathrm{t}+1) \\
& \text { (ii) } \mathrm{d}^{2} \mathrm{y}(\mathrm{t}) / \mathrm{dt}^{2}+2 \mathrm{y}(\mathrm{t}) \mathrm{dy}(\mathrm{t}) / \mathrm{dt}+3 \mathrm{ty}(\mathrm{t})=\mathrm{x}(\mathrm{t})
\end{aligned}
$$

9. Check whether the following system is
(a) Static or dynamic
(b) linear or non- linear
(c) Causal or non- causal
(d) Time invariant or time variant
(i) $y(n)=\log _{10}|x(n)|$
(ii) $y(n)=x^{2}(n)+1 / x^{2}(n-1)$
(iii) $y(t)=a t^{2} x(t)+b t x(t-4)$
10.(a) Check whether the following systems are causal or not?
(i) $y(t)=x^{2}(t)+x(t-4)$
(ii) $y(t)=x(t / 2)$
(iii) $y(n)=x(2 n)$
(b) Find whether the following systems are stable or not
[L1][CO1][05M]
(i) $y(t)=(t+5) u(t)$
(ii) $y(t)=\left(2+e^{-3 t}\right) u(t)$
(iii) $\mathrm{h}(\mathrm{n})=\mathrm{a}^{\mathrm{n}}$ for $0<\mathrm{n}<11$

UNIT -II

FOURIER SERIES AND FOURIER TRANSFORM SHORT ANSWER QUESTIONS

1. What is Fourier Series.
[L 1$][\mathrm{CO} 2][2 \mathrm{M}]$
2. What is the three important classes of Fourier series methods available.
[L1][CO2][2M]
3. What are the Dirichlet's conditions? State them.
[L1][CO2][2M]
4. What is the Relationship between exponential Fourier series and trigonometric Fourier series coefficients?
[L1][CO2][2M]
5. How do you obtain Cosine Fourier series from exponential Fourier series?
[L1][CO2][2M]
6. Differentiate the Fourier series and Fourier transform.
[L 1$][\mathrm{CO} 2][2 \mathrm{M}]$
7. What is Fourier transform?
[L 1$][\mathrm{CO} 2][2 \mathrm{M}]$
8. Define Linearity Property of Fourier Transform
[L 1$][\mathrm{CO} 2][2 \mathrm{M}]$
9. What are the Merits of Fourier Transform?
[L1][CO2][2M]
10. Define Fourier transform and Inverse Fourier transform of discrete time signal.
[L1][CO2][2M]

LONG ANSWER QUESTIONS

1.Find the Fourier series expansion of the half wave rectified sine wave shown in figure.
[L1][CO2][10M]

2. State and Prove any Five Properties of the Fourier Series.
[L3][CO2][10M]
3. Find the trigonometric Fourier series for the periodic signal $x(t)$ shown in below
[L3][CO2][10M]

4. Explain about exponential Fourier series and derive the Fourier series coefficient \quad [L1][CO2][10M]
5. Find the trigonometric Fourier series for the periodic signal $x(t)$ shown in below.

6. (a) Find the Fourier transform of the following
[L1][CO2][05M]
(i) $\operatorname{sgn}(t)$
(ii) $\sin \omega_{0} t$
(iii) $\cos \omega_{0} t$
(iv) 1 (Constant Amplitude)
(b). Find the Fourier transform of the following
[L 1$][\mathrm{CO} 2][5 \mathrm{M}]$
(i) impulse function
(ii) $x(t)=e^{-a t} u(t)$
(iii) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{\mathrm{j} \omega \mathrm{t}}$
(iv) $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
7. State and Prove the properties of Continuous time Fourier transform?
[L1][CO2][10M]
8. Find the Fourier transform of the following signals
[L1][CO2][10M]
(i) $x(t)=e^{-3 t} u(t)$
(ii) $\mathrm{x}(\mathrm{t})=\mathrm{te}^{-\mathrm{at}} \mathrm{u}(\mathrm{t})$
(iii) $x(t)=e^{-t} \sin 5 t u(t)$
(iv) $x(t)=e^{-t} \cos 5 t u(t)$
9. Find the inverse Fourier transform of the following signals
[L1][CO2][10M]
(i) $\mathrm{X}(\mathrm{w})=\frac{4(j w)+6}{(j w) 2+6(j w)+8}$
(ii) $\mathrm{X}(\mathrm{W})=\frac{1+3(j w)}{(j w+3) 2}$
(iii) $\mathrm{X}(\mathrm{w})=\mathrm{e}^{-2 \mathrm{w}} \mathrm{u}(\mathrm{w})$
10. (a) State and prove any three properties of the DTFT.
[L 2$][\mathrm{CO} 2][5 \mathrm{M}]$
(b) Find the Fourier Transform of the Signal (i) Triangular Pulse (ii) $e^{-a|t|}$
[L1][CO2][5M]

UNIT -III

SIGNAL TRANSMISSION THROUGH LINEAR SYSTESMS

SHORT ANSWER QUESTIONS

1. What are the properties of LTI systems?
[L1][CO3][2M]
2. Define transfer function of a system?
[L1][CO3][2M]
3. Define impulse response of a system.
[L1][CO3][2M]
4. What is a filter? How are filters classified?
[L1][CO3][2M]
5. What is the Relation between unit step and impulse response?
[L1][CO3][2M]
6. Define sampling and sampling period?
[L1][CO3][2M]
7. State Sampling theorem
[L1][CO3][2M]
8. What is Nyquist rate and Nyquist interval?
[L1][CO3][2M]
9. What is anti-aliasing filter?
[L1][CO3][2M]
10. State Sampling theorem?

LONG ANSWER QUESTIONS

1. (a) Explain the Filter characteristics of linear systems explain with neat diagrams [L1][CO3[5M]
(b) Define the following (i)Impulse Response (ii)Step Response (iii) Response of the System
[L1][CO3][5M]
2. (a) Derive the transfer function and impulse response of an LTI system.
[L1][CO3][5M]
(b) Define Linear time variant, Linear time-invariant, step response of the system.
[L2][CO3][5M]
[CO3][10M]
3. Discuss the properties of linear time invariant systems.
4. (a) Consider a stable LTI System characterized by the differential equation $d y(t) / d t+2 y(t)=x(t)$, Find its impulse response.
[L3][CO3][5M]
(b) Find the Nyquist Rate and Nyquist Interval of the following signals.
[L2][CO3][5M]
(i) $x(t)=1+\cos 2000 \pi t+\sin 4000 \pi t$
(ii) $\mathrm{x}(\mathrm{t})=10 \sin 40 \pi \mathrm{t} \cos 300 \pi \mathrm{t}$
5. (a) Let the system function of an LTI system be $1 /(\mathrm{j} \Phi+2)$. What is the output of the system for an input (0.8$)^{\mathrm{t}} \mathrm{u}(\mathrm{t})$?
[L3][CO3][5M]
(b) Consider a causal LTI system with frequency response $\mathrm{H}(\Phi)=1 / 4+\mathrm{j} \Phi$, for a input
$x(t)$, the system is observed to produce the output $y(t)=e^{-2 t} u(t)-e^{-4 t} u(t)$. Find the input $x(t)$.
[L1][CO3][5M]
6. Consider a stable LTI system that is characterized by the differential equation
[L3][CO3][10M]
$d^{2} y(t) / d t^{2}+4 d y(t) / d t+3 y(t)=d x(t) / d t+2 x(t)$ find the response for an input $x(t)=e^{-t} u(t)$.
7. Find the Nyquist rate and Nyquist interval for the following signals
[L1][CO3][10M]
(i) $\mathrm{x}(\mathrm{t})=1+\cos 2000 \pi \mathrm{t}+\sin 4000 \pi \mathrm{t}$
(ii) $10 \sin 40 \pi t \cos 300 \pi \mathrm{t}$
(iii) $x(t)=\operatorname{sinc}(100 \pi t)+3 \operatorname{sinc}^{2}(60 \pi t)$
(iv) $\mathrm{x}(\mathrm{t})=2 \operatorname{sinc}(100 \pi \mathrm{t})$
8. State and prove the sampling theorem for the band-limited signals with the help of graphical representation.
[L1][CO3][10M]
9. (a) Discuss about Effects of the under sampling. [L4][CO3][05M]
(b) A system produces an output of $y(t)=e^{-3 t} u(t)$ for an input of $x(t)=e^{-5 t} u(t)$. Determine the impulse response and frequency response of the system.
[L3][CO3][05M] 10. A signal $x(t)=2 \cos 400 \pi t+6 \cos 640 \pi t$ is ideally sampled at $\mathrm{fs}=500 \mathrm{~Hz}$. If the sampled signal is passed through an ideal LPF with a cut off frequency of 400 Hz , what frequency components will appear in the output? Find the output signal.
[L3][CO3][10M]

UNIT -IV

CONVOLUTION AND CORRELATION OF SIGNALS

SHORT ANSWER OUESTIONS

1. What is convolution? State the shift property of convolution.
2. State Time convolution and Frequency convolution theorem
3. What is correlation and types of correlation?
[L1][CO4][2M]
4. What are the properties of cross correlation for energy signals?
[L1][CO4][2M]
[L1][CO4][2M]
5. What are the properties of auto correlation for power signals?
[L1][CO4][2M]
6 . What is the relation between convolution and correlation?
[L1][CO4][2M]
6. What are the Properties of ESD?
[L1][CO4][2M]
7. Differentiate ESD and PSD?
[L1][CO4][2M]
8. State Parseval's energy theorem?
[L1][CO4][2M]
9. State Parseval's power theorem?

LONG ANSWER QUESTIONS

1. (a) Write the properties of convolution.
[L1][CO4][05M]
(b) Find the convolution of the following signal $\mathrm{x}_{1}(\mathrm{t})=e^{-2 t} u(t), \mathrm{x}_{2}(\mathrm{t})=e^{-4 t} u(t)$
[L1]CO4][05M]
2. (a) State and prove the time convolution theorem with Fourier transforms.
(b) State and prove the frequency convolution theorem with Fourier transforms.
[L1][CO4][05M]
3. (a) Derive the relation between convolution and correlation.
[L1][CO4][05M]
(b). Write the properties of cross correlation for energy signals [L2][CO4][05M]
4. (a) State and prove the Parseval's theorem for energy signals.
[L1][CO4][05M]
(b) State and prove the Parseval's theorem for power signals.
[L3][CO5][05M]
[L3][CO4][05M]
5. (a) Derive and Define the properties of Energy Spectral Density.
[L1][CO4][05M]
(b) Derive and Define the properties of Power Spectral Density
[L1][CO4][05M]
6. (a) Show that R(r) and ESD form Fourier transform pair.
[L1][CO4][05M]
(b) Show that $\mathrm{R}(\mathrm{r})$ and PSD form Fourier transform pair.
[L1][CO4][05M]
7. (a) Verify Parseval's theorem for the energy signal $x(t)=e^{-4 t} u(t)$.
[L2][CO4][05M]
(b) Determine the autocorrelation function and energy spectral density of $x(t)=e^{-a t} u(t)$.
[L3][CO4][05M]
8. (a) Find the autocorrelation of the signal $x(t)=a \sin \left(\omega_{0} t+\theta\right)$.
(b) Distinguish the ESD and PSD.
[L3][CO4][05M]
[L4][CO4][05M]
9. (a) Explain the detection of periodic signals in the presence of noise by auto correlation.
[L1][CO4][05M]
(b) Explain the detection of periodic signals in the presence of noise by cross correlation
[L1][CO4][05M]
Explain the extraction of noise by Filtering.
10. Explain the extraction of a signal from noise by filtering.
[L1][CO4][10M]

UNIT -V

LAPLACE TRANSFORMS AND Z-TRANSFORMS

SHORT ANSWER QUESTIONS

1. What is the Region of Convergence (ROC)?
[L1][CO5][2M]
2. What is the relation between Laplace transform and Fourier transform? [L1][CO5][2M]
3. State initial value theorem and final value theorem of Laplace transform.
[L1][CO5][2M]
4. What are the properties of ROC?
[L1][CO5][2M]
5. What is the Laplace Transform of Parabolic Function.?
[L1][CO5][2M]
6. What is the relation between Discrete-time Fourier transform and Z-transform?
[L1][CO5][2M]
7. What is the Z-transform of unit step signal?
[L1][CO5][2M]
8. Find Z-transform and ROC of $x(n)=(1 / 2)^{n} u(n-2)$
[L1][CO5][2M]
9. State the Convolution Property of Z-transform
[L1][CO5][2M]
10. Discuss the comparison of Laplace and Z-Transform.
[L1][CO5][2M]

LONG ANSWER QUESTIONS

1. State and prove the any five Properties Laplace Transform
[L3][CO5][10M]
2. (a) Find the Laplace transform of the signal $x(t)=e^{-a t} u(t)-e^{-b t} u(-t)$ and also find its ROC
[L1][CO5][05M]
(b) Find the Laplace transforms and region for the following signals
[L1][CO5][05M]
(i) $x(t)=e^{-5 t} u(t-1)$
(ii) $x(t)=e^{2 t} \sin 2 t$ for $t \leq 0$
(iii) $x(t)=t e^{-2|t|}$
3. Find the Laplace transform of the following signals using properties of Laplace transform
[L1][CO5][10M]
(i) $x(t)=t e^{-t} u(t)$
(ii) $x(t)=t e^{-2 t} \sin 2 t u(t)$
(iii) $x(t)=\sin a t / t$
(iv) $x(t)=1-e^{t / t}$
4. Find the inverse Laplace transform of the following
[L1][CO5] [10M]
(a) $\mathrm{X}(\mathrm{s})=1 / \mathrm{s}(\mathrm{s}+1)(\mathrm{s}+2)(\mathrm{s}+3)$
(b) $\mathrm{X}(\mathrm{s})=\left(3 \mathrm{~s}^{2}+22 \mathrm{~s}+27\right) /\left(\mathrm{s}^{2}+3 \mathrm{~s}+2\right)\left(\mathrm{s}^{2}+2 \mathrm{~s}+5\right)$
(c) $X(s)=s /(s+3)\left(s^{2}+4 s+5\right)$
5. (a) Find the convolution of the sequences:

> (i)

(ii)

[L1][CO5][05M]
(b) Discuss about the Properties of the ROC of Laplace transform
[L3][CO5][05M]
6. (a) State and prove time differentiation and time integration property of Laplace transform
[L1][CO5][05M]
(b). Find the Laplace transform for any 5 standard signals
[L1][CO5][05M]
7. Find the inverse z-transform of:
[L1][CO5][05M]

$$
X(z)=3 z^{-1} /\left(1-z^{-1)}\left(1-2 z^{-1}\right)\right.
$$

(a)If ROC; $|z|>2$
(b) If ROC ; $|z|<1$
(c) If ROC ; $1<|z|<2$
8. (a) Find the inverse Z-transform of $X(z)$ given $X(z)=1 /\left(1-\mathrm{az}^{-1}\right), R O C ; z|>|a|$
[L1][CO5][05M]
(b) Find the convolution of the sequences:
[L1][CO5] [05M]

$$
\mathrm{x}_{1}(\mathrm{n})=(1 / 2)^{\mathrm{n}} \mathrm{u}(\mathrm{n}) \text { and }(1 / 3)^{\mathrm{n}-2} \mathrm{u}(\mathrm{n})
$$

9. (a) State and prove initial and final value theorems of Z-transform?
[L3][CO5][05M]
(b) Using the Properties of Z-transform. Find the Z-transform of following signals
[L1][CO5][05M]
(i) $x(n)=u(-n)$
(ii) $x(n)=2^{n} u(n-2)$
(iii) $2(3)^{n} u(-n)$
10. (a) Prove that the final value of $x(n)$ for $X(z)=z^{2} /(z-1)(z-0.2)$ is 1.25 and its final value is unity?
[L3][CO5] [05M]
(b). Find the inverse Z-transform of $\mathrm{X}(\mathrm{z})=\mathrm{z}^{-1} /\left(3-4 \mathrm{z}^{-1}+\mathrm{z}^{-2}\right)$, ROC: $|\mathrm{z}|>1$
[L1][CO5][05M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (OBJECTIVE)

Subject with Code : SIGNALS AND SYSTEMS(16EC403) Course \& Branch: B.Tech - ECE
 Year \& Sem: II B.Tech \& I Sem
 Regulation: R18

UNIT - I

INTRODUCTION TO SIGNALS AND SYSTEMS

1. In continuous time signal, independent variable nature is \qquad []
A) Continuous
B) Discrete
C) Exponential
D) None
2. In discrete time signal, independent variable nature is \qquad $-$
D) None
A) Continuous
B) Discrete
C) Exponential
3. Generally $x(t+2)$ means
A) $x(t)$ delayed by 2 units
B) $x(t)$ advanced by 2 units
C) $x(t)$ delayed by 4 units
D) none
4. Generally $x(t-2)$ means
A) $x(t)$ delayed by 2 units B
B) $x(t)$ advanced by 2 units C
C) $x(t)$
t) delayed by 4 units D
5. Generally $x(2 n)$ means
A) Expansion version of $x(n)$
B)Compression version of $x(n)$
C) Delayed version of $x(n)$
D)none
6. Generally $x(n / 2)$ means
A) Expansion version of $\mathrm{x}(\mathrm{n})$
B) Compression version of $\mathrm{x}(\mathrm{n})$
C) Delayed version of $x(n)$
D) none
7. A discrete signal is said to be periodic signal, it satisfy \qquad condition
A) $x(n)=x(2 n)$
B) $x(n)=x(n+N)$
C) $x(t)=x(t+T)$
D) None
8. \qquad is the fundamental period of $x(n)=\cos 0.02 \pi n$
A) $1 / 100$
B) 100
C) 200
D) None
9. A signal is said to be even signal, it satisfy \qquad condition
A) $x(-t)=x(t)$
B) $x(-t)=-x(t)$
C) $x(t)=x\left(t^{2}\right)$
D) None
10. A signal is said to be energy signal, it satisfy \qquad condition [
]
A) $0<E<\infty \& p=0$ B) $0<E<\infty \& p=\infty$
C) $0<E<\infty \& p=1$
D) None
11. A signal is said to be power signal, it satisfy \qquad condition
A) $0<p<\infty \& E=0$
B) $0<\mathrm{p}<\infty \& \mathrm{E}=\infty$
C) $0<p<\infty \& E=1$
D) None
12. Following statement is true for unit impulse signal
$\delta(\mathrm{n})=1$ for $\mathrm{n} \neq 0$
B) $\delta(\mathrm{n})=1$ for $\mathrm{n}=0$
C) $\delta(\mathrm{n})=0$ for $\mathrm{n}=0$
D)None
13. Following statement is true for unit step signal
A) $u(n)=1$ for $n<0$
B) $u(n)=1$ for $n>0$
C) $u(n)=1$ for $n=0$
D)None
14. \qquad is the relation between unit impulse \&unit step signal
A) $\delta(\mathrm{n})=\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-1)$
B) $\delta(\mathrm{n})=\mathrm{u}(\mathrm{n})$
C) $\delta(\mathrm{n})=\mathrm{u}(\mathrm{n})=\mathrm{u}(\mathrm{n}-1)$
D)None
15. Following statement is true for continuous time unit step
A) $u(t)=1$ for $t>0$
B) $u(t)=1$ for $t<0$
C) $u(t)=1$ for $t=0$
D) None
16. A system is said to be linear system, it satisfy ----
A) superposition property B)homogeneity property
C) $\mathrm{a} \& \mathrm{~b}$
D) None
17. $\mathrm{y}(\mathrm{t})=2 \mathrm{x}(\mathrm{t})$, system is linear or nonlinear
A) Linear
B) Nonlinear
C) both
D) None
18. $\mathrm{y}(\mathrm{t})=\sin \mathrm{x}(\mathrm{t})$,then system is time variant or time invariant
A) Time variant
B) Time invariant
C) both
D) None
19. $y(n)=2 x(n)-x^{2}(n)$, system is memory or memory less
A) Memory less
B) memory
C) both
D) none
20. $y(n)=x(n-1)$,system is causal or non-causal
A) Non causal
B) causal
C)both
D) none
21. Generally $x(t+3)$ means
A) $x(t)$ delayed by 3 units $B) x(t)$ advanced by 3 units
C) both
D) None
22. A continuous signal is said to be periodic signal, it satisfy \qquad condition
A) $x(n)=x(2 n)$
B) $x(n)=x(n+N)$
C) $x(t)=x(t+T)$
D) None
23. \qquad is the fundamental period of $x(n)=\cos 0.04 \pi n$
A) 100
B) 200
C) 300
D) 50
24. $y(t)=8 x(t)$, system is linear or nonlinear
A) Linear
B) nonlinear
C) both
D) None
25. --- is example for memory system
A) Capacitor
B) inductor
C) resistor
D) None
26. Generally $x(4 n)$ means
A) Expansion version of $x(n)$
B)Compression version of $x(n)$
C) Delayed version of $x(n)$
D)none
27. Generally $x(t-3)$ means
A) $x(t)$ delayed by 3 units $B) x(t)$ advanced by 3 units
C) both
D) None
28. $y(n)=x(n)+x(n-1)$,system is memory or memory less
A) Memory
B) memory less
C) both
D) None
29. Fourier series is used to analyze ---- signals
A) Periodic
B) non periodic
C) both
D) none
30. For the existence of Fourier series, Dirichlet's conditions are
A) Necessary
B) Sufficient
C) Necessary and sufficient
D) none
31. The net areas of sinusoids over complete periods are
A) Finite
B)Infinite
C) Zero
D) none
32. In the trigonometric Fourier series representation of a signal, a_{0} is the
A) RMS value
B) Mean Square Value
C) Peak Value
D) Average Value
33. In the trigonometric Fourier series representation of an even function consists of [
A) Cosine terms
B) Sine terms
C) both sine and cosine
D) None
34. The coefficient a_{n} is zero for ------------- functions
A) Even
B) Odd
C) both A and B
D) None
35. In the trigonometric Fourier series representation of an ODD function consists of []
A) Cosine terms
B) Sine terms
C) both sine and cosine
D) None
36. The coefficient b_{n} is zero for ------------- functions
A) Even
B) Odd
C) both A and B
D) None
37. The mostly used Fourier series is
A) Trigonometric series
B) Exponential series
C) Cosine series
D) None
38. The frequency spectrum of non periodic signal is
A) Continuous
B) Discrete
C) both continuous and discrete
D) None
39. The time domain representation of a signal graphically is called
A) Waveform
B) Spectrum
C) Magnitude
D) None
40. The frequency spectrum of a periodic signal is
A) Continuous
B) Discrete
C) both continuous and discrete
D) None

UNIT - II

FOURIER SERIES and FOURIER TRANSFORMS

1. The Fourier transform may be applied to
A) Aperiodic
B) Periodic
C) Both periodic \& Aperiodic
D) Neither periodic or periodic
2. The spectrum of triangular pulse is
A) Gaussian function
B) Sinc function
C) Sinc 2 function
D) Rectangular function
3. The Fourier transform of $\operatorname{Cos} \mathrm{W}_{0} \mathrm{t}$ is
A). $\pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]$
B). $j \pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right]$
C). $\pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right]$
D). $j \pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]$
4. The Fourier transform of the exponential signal $e^{j \omega_{0} t}$ is [AE 2006]
A) a constant (B) a rectangular gate (C) an impulse (D) a series of impulses
5. The Fourier transform of $\operatorname{SinW}_{0} t$ is
A) $\pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]$
B) $j \pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right]$
C) $\pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right]$
D) $j \pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]$
6. The Fourier transform of $t x(t)$ is
A) $\frac{d X(j \omega)}{d \omega}$
B) $\mathrm{j} \frac{d X(j \omega)}{d \omega}$
C) $\frac{X(j \omega)}{\omega}$
D) $\frac{j d X(j \omega)}{d \omega}$
7. The Fourier transform of $e^{-a t} u(t)$ is [GATE 2000]
A) $\frac{1}{a-j \omega}$
B) $\frac{1}{a+j \omega}$
C) $\frac{1}{a^{2}+\omega^{2}}$
D) $\frac{1}{a^{2}-\omega^{2}}$
8. The Fourier transform for a function $\mathrm{x}(\mathrm{t})$ exists when
A) $\int_{\infty}^{\infty} f(t) d t=\infty$
B) $\int_{\infty}^{\infty}|f(t)| d t<\infty$
C) $\int_{\infty}^{\infty}|f(t)| d t=\infty$
D) $\int_{\infty}^{\infty} f(t) d t>\infty$
9. The Fourier transform of $u(t)$ is
A) $\frac{1}{j \omega}$
B) $j \omega$
C) $\frac{1}{1+j \omega}$
D) $\pi \delta(\omega)+\frac{1}{j \omega}$
10. The Fourier transform of $e^{j \omega_{0} t} x(t)$ is
A) $X\left(\omega+\omega_{0}\right)$
B) $X\left(\omega_{0}\right)$
C) $X\left(\omega-\omega_{0}\right)$
D) $X\left(\frac{\omega}{\omega_{0}}\right)$
11. Parseval's identity states that $\int_{\infty}^{\infty}|f(t)|^{2} d t=$
A). $\int_{\infty}^{\infty} X_{1}(\omega) X_{2}^{*}(\omega) d \omega$
B). $\frac{1}{2 \pi} \int_{\infty}^{\infty} X_{1}(\omega) X_{2}^{*}(\omega) d \omega$
C). $\frac{1}{2 \pi} \int_{\infty}^{\infty} X_{1}^{*}(\omega) X_{2}^{*}(\omega) d \omega$
D). $2 \pi \int_{\infty}^{\infty} X_{1}(\omega) X_{2}^{*}(\omega) d \omega$
12. The Fourier transform of $x^{*}(t)$ is
A) $X^{*}(\omega)$
B) $X^{*}(-\omega)$
C) $-X^{*}(\omega)$
D) $-X^{*}(-\omega)$
13. The Fourier transform of $\frac{d x(t)}{d t}$ is
A) $\frac{d \omega}{\omega} X(\omega)$
B) $\frac{1}{\omega} X(\omega)$
C) $j \omega X(\omega)$
D) $\frac{j \omega}{X(\omega)}$
14. The Fourier transform of $x(a t)=$
A) $\frac{1}{|a|} X\left(\frac{\omega}{a}\right)$
B) $\frac{1}{|a|} X(a \omega)$
C) $\frac{1}{|a|} X\left(\frac{a}{\omega}\right)$
D) $\frac{1}{|\omega|} X\left(\frac{\omega}{a}\right)$
15. The Fourier transform of a unit impulse function $\delta(t)$ is
A) $1 / \omega$
B) 1
C) ω
D) $1 / \mathrm{j} \omega$
16. The Fourier transform of $\delta\left(t-t_{0}\right)$ is
A) $e^{j \omega t_{0}}$
B) $e^{-j \omega t_{0}}$
C) $e^{-j t_{0}}$
D) $\delta\left(t-t_{0}\right)$
17. The Fourier transform of $e^{-a t} u(t)$ is
A) $\frac{1}{a^{2}+w^{2}}$
B) $\frac{1}{a-j w}$
C) $\frac{1}{a+j w}$
D) $\frac{1}{a^{2}-w^{2}}$
18. The Fourier transform of $x(-t)$ is
A) $X(\omega)$
B) $X(-\omega)$
C) $X\left(\frac{1}{\omega}\right)$
D) $-X(\omega)$
19. The FT of $\mathrm{x}_{1}(\mathrm{n}){ }^{*} \mathrm{x}_{2}(\mathrm{n})$ is
A) $\mathrm{X} 1(\omega) \mathrm{X}(\omega)$
B) $\mathrm{X} 1(\omega) \mathrm{X} 2(\omega)$
C) $\mathrm{X} 1(\omega) * \mathrm{X} 2(\omega)$
D) Doesn't exits
20. The FT of $\delta(t)$ is
A) 0
B) 1
C) ∞
D) not defined
21. The F.T of $d 2 / d t[x(t-2)]$ is
A) $X(j \omega / 2) /-\omega^{2}$
B) $-\omega^{2} \mathrm{X}(\mathrm{j} \omega / 2)$
C) $X(j \omega)$ ej 2ω
D) $-\omega^{2} e^{-\mathrm{j} 2} \omega x(j \omega)$
22. The FT of $x(n) * h(n)$ is
A) $\mathrm{X}(\omega) \mathrm{H}(\omega)$
B) $\mathrm{X}(\omega)^{*} \mathrm{H}(\omega)$
C) $\mathrm{X}(\omega) \mathrm{H}(-\omega)$
D) $\mathrm{X}(\omega) * \mathrm{H}(-\omega)$
23. The FT of analog signal consists of a spectrum with frequency range
A) $-\pi$ to π
B) 0 to 2π
C) 0 to ∞
D) $-\infty$ to ∞
24. The DTFT of $x(n)=2^{n} u(n)$ is
(A) $1 / 1-2 e^{-j \Omega}$
(B) $e^{j \Omega} / 1-2 e^{-j \Omega}$
(C) $1 / 1+2 e^{-j \Omega}$
(D) none
25. DTFT is a special case of
(A) Z- transform
(B) Laplace transform
(C) continuous time F.T
(D) none
26. Z transform of $x(n)$ is the DTFT of
(A) $x(n) r-n$
(B) $x(n) r n$
(C) $x(n) u(n)$
(D) $x(n) r(n)$
27. The F.T of $u(t)$ is
(A) $\pi \delta(\omega)$
(B) $1 / \mathrm{j} \omega$
(C) $1 / \mathrm{j} \omega$
(D) None
28. The inverse F.T of $j \omega /(1+1 / j \omega) 2$ is \qquad
(A) (t-1) e-t u(t)
(B) (1-t) e-t $u(t)$
(C) $(1+t) e-t u(t)$
(D) $-(1+\mathrm{t}) \mathrm{e}-\mathrm{t} \mathrm{u}(\mathrm{t})$
29. The frequency response of LTI system is given by the FT of the \qquad of the system []
A) transfer function
B)output
C)impulse function
D)input
30. The FT of $x(n) * h(n)$
A) $\mathrm{X}(\omega) \mathrm{H}(\omega)$
B) $\mathrm{X}(\omega) * \mathrm{H}(\omega) \mathrm{C}) \mathrm{X}(\omega) \mathrm{H}(-\omega)$
D) $\mathrm{X}(\omega) * \mathrm{H}(-\omega)$
31. The FT of analog signal consists of a spectrum with frequency range
A) $-\pi$ to π
B) 0 to 2π
C) 0 to ∞
D) $-\infty$ to ∞
32. The FT of a discrete-time signal is unique in the range
A) $-\pi$ to π
B) 0 to 2π
C) 0 to ∞
D) $-\infty$ to ∞
33. The FT of $\delta(n)$ is
A) 0
B) 1
C) ∞
D) not defined
34. The FT of $u(n)$
A) $1 / 1-e^{j \omega}$
B) $1 / 1-e^{-j \omega}$
C) $1 / 1-\omega$
D) $1 / 1-j \omega$
35. The FT of $\mathrm{a}^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
A) $1 / 1-\mathrm{a} e^{j \omega}$
B) $1 / 1-a e^{-j \omega}$
C) $1 / 1$-ja ω
D) $1 / 1+a j \omega$
36. The FT of $-a^{n} u(-n-1)$ is
A) $1 / 1-\mathrm{a} e^{j \omega}$
B) $1 / 1-a e^{-j \omega}$
C) $1 / 1-\mathrm{ja} \omega$
D) $1 / 1+a j \omega$
37. The FT of $2^{n} u(n)$ is
A) $1 / 1-2 e^{j \omega}$
B) $1 / 1-2 e^{-j \omega}$
C) $1 / 1+2 e^{j \omega}$
D) doesnot exists
38. The FT of $\delta(n+2)-\delta(n-2)$ is
A) $2 \mathrm{j} \sin 2 \omega$
B) $2 \cos 2 \omega$
C) $\sin 2 \omega$
D) $\cos 2 \omega$
39. The FT of $x(n) \cos \omega_{0} n$ is
A) $1 / 2\left\{X\left(\omega+\omega_{0}\right)+X\left(\omega-\omega_{0}\right)\right\}$
B) $1 / 2\left\{X\left(\omega+\omega_{0}\right)+X\left(\omega+\omega_{0}\right)\right\}$
C) $X(\omega)$
D) none
40. The FT of $x(-n)$ is
A) $X(\omega)$
B) $X(-\omega)$
C) $X(\omega+1)$
D) none

UNIT -III

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

1. The characteristics of an LTI system are completely characterized by its
A) Impulse response
B) step response
C) transfer function
D) none
2. For defining a transfer function, the initial conditions must be taken as
A) Zero
B) infinite
C) finite
D) none
3. The spectral density function of the input signal $x(t)$ is given by
A) $X(\Phi)$
B) $\mathrm{H}(\Phi)$
C) $\mathrm{Y}(\varpi)$
D) $X^{2}(\oplus)$
4. A linear time invariant system with an impulse response $h(t)$ produces output $y(t)$ when an input $x(t)$ is applied. When an input $x(t-\tau)$ is applied to a system with a impulse response $h(t-\tau)$,the output will be(Gate-2009)
A) $\mathrm{Y}(\tau)$
B) $\mathrm{Y}(2(\mathrm{t}-\tau))$
C) $\mathrm{Y}(\mathrm{t}-\tau)$
D) $\mathrm{Y}(\mathrm{t} 2 \tau)$
5. The probability density function of the envelope of narrow band Gaussian noise is []
A) Poisson
B) Gaussian
C) Rayleigh
D) Rician
6. The significance of PSD is
A) amplitude
B) frequency
C) unit band width
D) phase
7. The PSD of a real valued random process is function of frequency
A) Even
B) odd
C) symmetric
D) unsymmetric
8. A linear system possesses the important property of
A) superposition
B) variation
C) constancy
D) none
9. A system whose behavior and characteristics of the system are fixed over time is called []
A) time variant
B) time invariant
C) linear
D) none
10. for distortion less transmission the magnitude $H(w)$ is
A) Zero
B) Infinite
C) Constant
D) linear
11. A transmission is said to be__ if the response of the system is exact replica of the input signal
A) noise less
B) distortion less
C) causal
D) none
12. $\mathrm{T}[\delta(n)]=$
A) $h(n)$
B) $\mathrm{H}(\mathrm{s})$
C) $\mathrm{H}(\mathrm{n})$
D)none
13. In time domain, a linear system is described in terms of its
A) unit step
B)ramp
C)impulse response
D)none
14. for distortion less transmission the phase must be
A) Zero
B) Infinite
C) Constant
D) linear
15. for distortion less system, the response must be \qquad of the input signal
A) Exact replica
B) different
C) non-linear
D) none
16. In time variant system, if $y(n)=H[x(n)]$ then $y(n-k)=$
A) $\mathrm{H}[\mathrm{x}(\mathrm{n}+\mathrm{k})]$
B) $h[x(n-k)]$
C) $\mathrm{h}[\mathrm{x}(\mathrm{n}+\mathrm{k})]$
D) none
17. \qquad criterion is a test which distinguish between a physically realizable characteristics from an unrealizable
A) Paley wiener
B) drichlet's
C) Pascal's
D) none
18. $\int_{-\infty}^{\infty}|H(\omega)|^{2} \mathrm{~d} \omega$ should be
A) >0
B) $=0$
C) $<\infty$
D) none
19. For distortion transmission the system bandwidth must be equal to
A) Signal bandwidth
B) infinite
C) $1 / 2$ signal bandwidth
D) 2 times signal bandwidth
20. A system is defined by impulse response $h(n)=2^{n} u(n-2)$.the system is(Gate2011) [
A) Linear
B) nonlinear
C) unstable
D) stable
21. $y(n)=3 x(n+3)$
A) Linear
B) nonlinear
C) both
D) None
22. ---- filter passes high frequency signals
A) Low pass
B) high pass
C) band pass
D) None
23. $y(n)=k \Delta x(n)$, where $\Delta x(n)=[x(n+1)-x(n)]$
A) Linear
B) nonlinear
C) both
D) None
24. $\mathrm{h}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t}-1)$
A) Non causal
B) causal
C) both
D) None
25. $h(t)=e^{-2 t} u(t-1)$
A) Stable
B) unstable
C) both
D) None
26. Rise time is \qquad proportional to the cutoff frequency of the filter
A) directly
B)inversely
C) linearly
D)none
27. A signal is said to be causal if it is zero for
A) $t=\infty$
B) $t>0$
C) $\mathrm{t}<0$
D)none
28. The \qquad of a system is arbitrarily defined as the interval of frequencies over which the magnitude $|\mathrm{H}(\omega)|$ remains with in $1 / \sqrt{2}$ times its value at the midband
A) beam width
B) band width
C) pulse width
D) none
29. The signal distortion depends on the \qquad of the system
A) beam width
B) band width
C) pulse width
D) none
30. In time variant system, if $\mathrm{y}(\mathrm{n})=\mathrm{H}[\mathrm{x}(\mathrm{n})]$ then $\mathrm{y}(\mathrm{n}-\mathrm{k})=$
A) $\mathrm{H}[\mathrm{x}(\mathrm{n}+\mathrm{k})]$
B) $h[x(n-k)]$
C)h[x(n-k)]
D)none
31. criterion is tests which distinguish between a physically realizable characteristics from on unrealizable characteristics
A) Paley wiener
B)drichlet's
C)Pascal's
D) none
32. ---- filter passes low frequency signals
A) Low pass
B) high pass
C) band pass
D) None
33. ---- filter passes band of frequency signals
A) Low pass
B) high pass
C) band pass
D) None
34. An energy signal has $G(f)=10$.Its energy density spectrum is(Gate-2011)
A) 10
B) 100
C) 50
D) 20
35. Which one is time invariant system? (Gate-2013)
A) $y(n)=x(2 n)$
B) $y(n)=x(n) x(n-1)$
C) $y(n)=x(n / 2)$
D) none
36. The function $\delta(\mathrm{t}-\mathrm{b})$ is(Gate-2010)
A) An impulse function
B) a step function originating at $t=b$
C) An impulse function originating at $t=b$
D) None
37. For distortion less transmission the amplitude response is
A) Zero
B) Infinite
C) Constant
D) linear
38. For distortion less transmission the phase response is
A) Zero
B) linear
C) Constant
D) linear
39. The output of an LTI system is equal to unit impulse when input is
A) $\delta(t)]$
B) $u(t)$
C) $r(t)$
D) all the above
40. For distortion transmission the bandwidth of the system is
A) Finite
B)infinite
C) zero
D) very small

UNIT-IV

CONVOLUTION AND CORRELATION OF SIGNALS

1. It is possible to compute the cross correlation $\operatorname{Rxy}(f)$ between two signals $x(t)$ and $y(t)$ directly from their convolution provided
A) $x(t)$ has even symmetry
B) $x(t)$ has odd symmetry
C) $y(t)$ has even symmetry
D) $y(t)$ has odd symmetry
2. $x(t)=10 \pi(t / 4)$ and $y(t)=[\delta(t-1)+\delta(t-5)]$.then $x(t) * y(t)$ is
A) $10 \pi((t-3) / 4)$
B) $10 \pi((\mathrm{t}-4) / 4)$
C) $10[\pi((\mathrm{t}-3) / 4)+\pi((\mathrm{t}-5) / 4)]$
D) none
3. $\mathrm{X}(\mathrm{t})=5 \pi(\mathrm{t} / 4)$, the waveform of $\operatorname{Rxx}(\mathrm{f})$ is
A) Rectangular
B) triangular
C) trapezium
D) none
4. $\mathrm{X}(\mathrm{t})=10 \pi(\mathrm{t} / 10), \operatorname{Sxx}(\mathrm{f})$ is
A) a sinc function B) a triangular function C) a sinc square function D) a rectangular function
5. $\mathrm{X}(\mathrm{t})=5 \pi(\mathrm{t} / 10)$, the maximum value of $\operatorname{Rxx}(\mathrm{f})$ is
A) 250
B) 50
C) 500
D) 25
6. $\mathrm{X}(\mathrm{t})=10 \pi(\mathrm{t} / 10)$, the maximum value of $\operatorname{Sxx}(0)$ is
A) 100
B) 1000
C) 500
D) 5000
7. $\mathrm{X}(\mathrm{t})=10 \pi(\mathrm{t} / 10)$, the total area under the $\operatorname{Sxx}(\mathrm{f})$ curve is
A) 1000
B) 500
C) 100
D) 10000
8. The signal e-t $u(t)$ is applied as input to an L-section $R C$ low pass filter with time constant $=1$ The energy spectral density at the output of the filter at the $3-\mathrm{dB}$ cutoff frequency of the filter is
A) 1
B) 0.5
C) 0.25
D) 1.5
9. $x(n)=\{1,-1,2,-2\}$ Then $\operatorname{rxx}(0)$ is
A) 0
B) 10
C) 12
D) 8
10. if $\mathrm{x}(\mathrm{n})$ is of finite duration and has N samples, $\mathrm{rxx}(\mathrm{k})$ wil have a duration of
A) 2 N samples
B) N2 samples
C) $(2 \mathrm{~N}-1)$ samples
D) $(2 \mathrm{~N}+1)$ samples
11. $x(n)=2-n u(n)$. then $r x x(0)$ is
A) $1 / 3$
B) $2 / 3$
C) 1
D) $4 / 3$
12. $\mathrm{x}(\mathrm{n})=(0.5)-\mathrm{nu}(-\mathrm{n})$. then $\mathrm{rxx}(0)$ is
A) $4 / 3$
B) 1
C) $2 / 3$
D) $1 / 3$
13. FFT can be used for a computation of
A) linear convolution but not circular convolution B) circular convolution but not linear convolution C) both linear and circular convolutions D) neither linear nor circular convolutions
14. If $\mathrm{r}_{\mathrm{xy}}(3)=12$ for $\mathrm{x}(\mathrm{n})=\{4,-2,2,0,4\}$ and $\mathrm{y}(\mathrm{n})=\{3,0,-3,6\}$, what is $\mathrm{r}_{\mathrm{xy}}(2)$ if $\mathrm{x}(\mathrm{n})=\{2,-1,1,0,2\}$ and $y(n)=\{0.5,0,-0.5,1\}$
A) 3
B) 2.5
C) 2
D) 1
15. $x(n)=\{2,-1,3,-2\}$. What is the value of $\mathrm{r}_{\mathrm{xy}}(0)$
A) 2
B) 1.414
C) 18
D) 4
16. $x(n)=\{5,5,5,5,5\}$ and $y(n)=\{20,20,1.414,20,-30\}$. The upper bound for $\left|r_{x y}(k)\right|$ is []
A) 50
B) 500
C) 100
D) 25
17. The total area under the PSD is equal to the--------------------- of the signal
A) Average power
B) average energy
C) total energy
D) total power
18. The convolution of $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ is given by $\mathrm{y}(\mathrm{t})=\int_{o}^{t} \mathrm{x}(\tau) h(t-\tau) d \tau$, then
A) Both $x(t)$ and $h(t)$ are causal
B) Both $x(t)$ and $h(t)$ are non-causal
C) $x(t)$ causal and $h(t)$ is non-causal
D) $h(t)$ is causal and $x(t)$ is non-causal
19. The convolution of $x(t)$ and $h(t)$ is given by $y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$, then
A) Both $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ are causal
B) Both $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ are non-causal
C) $x(t)$ causal and $h(t)$ is non-causal
D) $h(t)$ is causal and $x(t)$ is non-causal
20. The convolution of $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ is given by $\mathrm{y}(\mathrm{t})=\int_{-\infty}^{t} \mathrm{x}(\tau) h(t-\tau) d \tau$, then
A) Both $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ are causal
B) Both $x(t)$ and $h(t)$ are non-causal
C) $x(t)$ causal and $h(t)$ is non-causal
D) $h(t)$ is causal and $x(t)$ is non-causal
21. The convolution of $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ is given by $\mathrm{y}(\mathrm{t})=\int_{o}^{\infty} \mathrm{x}(\tau) h(t-\tau) d \tau$, then
A) Both $x(t)$ and $h(t)$ are causal
B) Both $x(t)$ and $h(t)$ are non-causal
C) $x(t)$ causal and $h(t)$ is non-causal
D) $h(t)$ is causal and $x(t)$ is non-causal
,
22. The time convolution theorem states that $\mathrm{F}\left[\mathrm{x}_{1}(\mathrm{t}) * \mathrm{x}_{2}(\mathrm{t})\right]=$
A) $\quad X_{1}(w) X_{2}(w)$
B) $X_{1}(w) * X_{2}(w)$
C) $1 / 2 \pi\left[X_{1}(w) X_{2}(w)\right]$
D) $1 / 2 \pi$
$\left[\mathrm{X}_{1}(\mathrm{w}) * \mathrm{X}_{2}(\mathrm{w})\right]$
23. The frequency convolution theorem states that $F\left[x_{1}(t) x_{2}(t)\right]=$
A) $X_{1}(w) X_{2}(w)$
B) $X_{1}(w) * X_{2}(w)$
C) $1 / 2 \pi\left[X_{1}(w) X_{2}(w)\right]$
D) $1 / 2 \pi$
$\left[\mathrm{X}_{1}(\mathrm{w}) * \mathrm{X}_{2}(\mathrm{w})\right]$
24. The autocorrelation function and PSD form a \qquad
A) Fourier Transform
B) Laplace Transform
C) Z- Transform
D) Fourier series
25. The condition for orthogonality of two functions $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$ in terms of correlation is
A) $\mathrm{R}_{12}(\tau)=\infty$
B) $\mathrm{R}_{12}(\tau)=0$
C) $\mathrm{R}_{12}(\tau)=1$
D)R12 $(\tau)=$ finite
26. The autocorrelation is maximum at
A) $\tau=0$
B) $\tau=\infty$
C) $\tau=1$
D) $\tau=$ none
27. The autocorrelation function and ESD form a \qquad
A) Fourier Transform
B) Laplace Transform
C) Z- Transform
D) Fourier series
28. The Fourier transform of the cross correlation of two signals $x_{1}(t)$ and $x_{2}(t)$ is equal to
A) $\quad X_{1}(w) X_{2}(w)$
B) $X_{1}(w) * X_{2}(w)$
C) $\mathrm{X}_{1}{ }^{*}(\mathrm{w}) \mathrm{X}_{2}{ }^{*}(\mathrm{w})$
D)
none
29. The cross correlation of $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$ is the same as the convolution of
A) $x_{1}(t)$ and $x_{2}(-t)$
B) $x_{1}(t)$ and $x_{2}(t)$
C) $\mathrm{x}_{1}(-\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$
D) $x_{1}(-t)$ and $x_{2}(-t)$
30. The distribution of average power of the signal in frequency domain is called \qquad
A) EDS
B) PDS
C) EDS and PDS
D) None
31. The total area under the EDS is equal to the \qquad of the signal
A) Average power
B) average energy
C) total energy
D) total power
32. The distribution of power or energy of a signal per unit bandwidth is called \qquad
A) EDS
B) PDS
C) EDS and PDS
D) None
33. The time convolution theorem states that
A) $x 1(t) * x 1(t)=$
X1(w)X2(w)
B) $\mathrm{x} 1(\mathrm{t}) * \mathrm{x} 1(\mathrm{t})=\mathrm{X} 1(\mathrm{w}) * \mathrm{X} 2(\mathrm{w})$
C) $\mathrm{x} 1(\mathrm{t}) * \mathrm{x} 1(\mathrm{t})=$
$1 / 2 \pi[\mathrm{X} 1(\mathrm{w}) * \mathrm{X} 2(\mathrm{w})]$
D) $\mathrm{x} 1(\mathrm{t}) * \mathrm{x} 1(\mathrm{t})=1 / 2 \pi[\mathrm{X} 1(\mathrm{w}) \mathrm{X} 2(\mathrm{w})]$
34. The autocorrelation function is maximum at \qquad
A) Origin
B) Top
C) bottom
D) None
35. If $R_{x y}(0)=0$ then the signals are
A) Orthogonal
B) non orthogonal
C) both orthogonal and non-orthogonal
D)

None
36. The convolution of signals with an impulse is equal to
A) A signal itself
B) amplitude differentC) time period different
D) None
37. The cross correlation of \qquad signals is zero
A) Orthogonal
B) non orthogonal
C) both orthogonal and non-orthogonal
D)

None

38. The autocorrelation function at origin is equal to the------
A) Average power
B) average energy
C) total energy
D) total power
39. The distribution of energy of a signal in frequency domain is called \qquad
A) EDS
B) PDS
C) EDS and PDS
D) None
40. Correlation of two signals is a measure of ------------ between those signals
A) difference
B) similarity
C) comparison
D) None

UNIT-V

LAPLACE TRANSFORM \& Z-TRANSFORM

1. If $\mathrm{x}(\mathrm{t})$ and its d / dt are laplace transformable and the LT of $\mathrm{x}(\mathrm{t})$ is $\mathrm{X}(\mathrm{s})$ then $\lim _{t \rightarrow \infty} x(t)$ is given by
A) $\lim _{s \rightarrow \infty} s X(s)$
B) $\lim _{s \rightarrow 0} s X(s)$
C) $\lim _{s \rightarrow \infty} X(s) / s$
D) $\lim _{s \rightarrow 0} X(s) / s$
2. What is the Laplace transform of a delayed unit impulse function $\delta(t-1)$ \qquad []
A) 1
B) 0
C) e^{-s}
D) s
3. What is the Laplace transform of $x(t)=e^{-2 t} u(t) * t u(t)$
A) $-1 / s^{2}(s+2)$
B) $-1 / \mathrm{s}^{2}(\mathrm{~s}-2)$
C) $1 / \mathrm{s}^{2}(\mathrm{~s}-2)$
D) $1 / \mathrm{s}(\mathrm{s}-2)$
4. The output of a linear system to a unit step input $u(t)$ is $t^{2} e^{t}$ the system function $H(s)$ is
A) $2 / s^{2}(s+2)$
B) $2 /(\mathrm{s}+2)^{2}$
C) $2 /(\mathrm{s}+2)^{3}$
D) $2 \mathrm{~s} /(\mathrm{s}+2)^{3}$
5. Laplace transform of a $\mathrm{e}^{-\mathrm{at}} \sin \omega \mathrm{t}$ is
A) $\omega /(s+a)^{2}+\omega^{2}$
B) $\omega /(\mathrm{s}-\mathrm{a})^{2}+\omega^{2}$
C) $\omega /(\mathrm{s}-\mathrm{a})^{2}-\omega^{2}$
D) $\omega /(\mathrm{s}+\mathrm{a})^{2}-\omega^{2}$
6. The Impulse response of RL circuit is
A) Rising exp
B) Decaying \exp
C) Step
D) Parabolic
7. The impulse response of a system is $h(t)$. When the input is $\delta(\mathrm{t})$, the output $\mathrm{y}(\mathrm{t})$ will be
A) $y(t)$
B) $\delta(\mathrm{t})$
C) $h(t)$
D) None
8. The convolution of $u(t)^{*} u(t)$ is
A) $u^{2}(t)$
B) tu (t)
C) $t^{2} u(t)$
D) None
9. Laplace transform of $d / d x x(t)$
A) $\mathrm{X}(\mathrm{s}) / \mathrm{s}$
B) $X(s)$
C) $\mathrm{s} / \mathrm{X}(\mathrm{s})$
D) $\mathrm{X}(\mathrm{s})$
10. The unit step response of a system starting from rest is given by $c(t)=1-e^{-2 t}$ for $t \geq 0$ The transfer function is
A) $1 /(1+2 s)$
B) $2 /(\mathrm{s}+2)$
C) $1 /(\mathrm{s}+2)$
D) $2 \mathrm{~s} /(1+2 \mathrm{~s})$
11. The transfer function of an LTI system is given by $\mathrm{H}(\mathrm{s})=\mathrm{e}^{-2 \mathrm{~s}}$. What is the impulse response of the system
A) $e^{-2 t} u(t)$
B) $u(t-2)$
C) $\delta(t-2)$
D) $e^{2 t} u(t)$
12. $X(s)=L[x(t)]$, then $L\left\{d^{n} / d^{n} x(t)\right\}$ is
A) $X(s)$
B) $s^{n} X(s)$
C) $[\mathrm{X}(\mathrm{s})]^{\mathrm{n}}$
D) $d^{n} / \mathrm{ds}^{n} X(s)$
13. Given $\mathrm{x}(\mathrm{t}) \leftrightarrow \mathrm{X}(\mathrm{s})$ be a Laplace transform pair then the inverse Laplace transform of $\mathrm{X}(\mathrm{s}+2 \mathrm{j})$ is
A) $e^{-j 2 t} x(t)$
B) $e^{-2 t} x(t)$
C) $e^{2 t} x(t)$
D) $e^{j 2 t} x(t)$
[]
14. Poles of the a Laplace transform are those complex points at which the transfer function will be
A) 0
B) 1
C) ∞
D) None
15. The Z transform of conjugation $x^{*}(n)$ is
A) $X^{*}\left(z^{*}\right)$
B) $X^{*}(\mathrm{z}$
C) $X\left(z^{*}\right)$
D) None
16. The Z transform of multiplication of $n x(n)$ is
A) $\mathrm{z} d / \mathrm{dz} \mathrm{X}(\mathrm{z})$
B) $-\mathrm{zd} / \mathrm{dz} \mathrm{X}(\mathrm{z}$
C) $-\mathrm{z} \int \mathrm{X}(\mathrm{z})$
D) $\mathrm{z} \int \mathrm{X}(\mathrm{z})$
17. The Z transform of time shifting of a $x(n-m)$ is
A) $\mathrm{z}^{\mathrm{m}} \mathrm{X}(\mathrm{z})$
B) $z^{m} / X(z)$
C) $\mathrm{z}-{ }^{\mathrm{m}} \mathrm{X}(\mathrm{z})$
D) $z^{-}{ }^{\mathrm{m}} / \mathrm{X}(\mathrm{z})$
18. Z transform of time function $\sum_{k=0}^{\infty} \delta(n-k)$ is
A) $(z-1) / \mathrm{z}$
B) $\mathrm{z} /(\mathrm{z}-1)^{2}$
C) $\mathrm{z} /(\mathrm{z}-1)$
D) $(\mathrm{z}-1)^{2} / \mathrm{z}$
19. Z transform $F(z)$ function of function $f(n T)=a^{n} T$
A) $\mathrm{z} /\left(\mathrm{z}-\mathrm{a}^{\mathrm{T}}\right)$
B) $z /\left(z+a^{T}\right)$
C) $z /\left(z-a^{-T}\right)$
D) $z /\left(z+a^{-T}\right)$
20. The ROC of the Z transform of a unit step function
A) $|z|>1$
B) $|z|<1$
C) $\operatorname{Re}(\mathrm{Z})>0$
D) $\operatorname{Re}(Z)<0$
21. If $\mathrm{x}(\mathrm{n})$ and $\mathrm{X}(\mathrm{z})$ are the Z transform pair, Z transform of $\sum_{k=-\infty}^{\infty} x(n-k)$ is
A) $z^{-k} X(z)$
B) z^{-k}
C) $\sum_{k=-\infty}^{\infty} \mathrm{z}-\mathrm{kX}(\mathrm{z})$
D) $\sum_{k=-\infty}^{\infty} \mathrm{z}-\mathrm{k}$
22. The only signal whose ROC is entire z-plane is
A) $\delta(\mathrm{n})$
B) $u(n)$
C) $r(n)$
D) none
23. Unilateral Z transform of $x(n)$ is equivalent to bilateral Z transform of
A) $x(n) u(n-1)$
B) $x(n) u(n)$
C) $\delta(\mathrm{n})$
D) $x(n-1) u(n-1)$
24. DTFT is a special case of
A) Z transform
B) Laplace transform
C) CTFT
D) None
25. ROC is defined as a range values of z for which $\mathrm{X}(\mathrm{z})$
A) Converges
B) Divergence
C) zero
D) Infinity
26. The ROC of a causal stable system must include the
A) origin
B) Infinity
C) Ring
D) Unit circle
27. Z transform of $x(n)$ is the DTFT of
A) $x(n) r^{-n}$
B) $x(n) r^{n}$
C) $x(n) u(n)$
D) $x(n) r(n)$
28. The Z transform of the signal $x(n-2)$ is
A) $z^{4} /\left(z^{2}-16\right)$
B) $(\mathrm{z}+2)^{2} /(\mathrm{z}+2)^{2}-16$
C) $1 /\left(z^{2}-16\right)$
D) $(\mathrm{z}-2)^{2} /(\mathrm{z}+2)^{2}-16$
29. If $x(n)$ is right sided, $X(z)$ has a signal pole and $x(0)=2, x(2)=1 / 2$ then $x(n)$ is
A) $u(-n) / 2^{n-1}$
B) $u(n) / 2^{n-1}$
C) $u(-n) / 2^{n+1}$
D) $u(n) / 2^{n+1}$
30. The Z transform $\delta(\mathrm{n})$ is
A) -1
B) 0
C) 1
D) ∞
31. In the z-plane ROC of Z transform $X(z)$ consist of
A) Strips
B) Parabola
C) Rectangle
D) Ring
32. ROC does not contain any
A) Poles
B) Zeros
C) Ones
D) None
33. Z transform of unit step sequence is
A) $z /(z-1)$
B) $\mathrm{z} /(\mathrm{z}-1)^{2}$
C) $\mathrm{z} /(\mathrm{z}-1)$
D) $(\mathrm{z}-1)^{2} / \mathrm{z}$
34. Mapping $\mathrm{z}=\mathrm{e}^{\text {st }}$ from s-plane to z -plane is
A) one to one
B) many to one
C) one to many
D) many to many
35. Z transform of time function $\sum_{k=0}^{\infty} \delta(n-k)$ is
A) $(\mathrm{z}-1) / \mathrm{z}$
B) $\mathrm{z} /(\mathrm{z}-1)^{2}$
C) $\mathrm{z} /(\mathrm{z}-1)$
D) $(\mathrm{z}-1)^{2} / \mathrm{z}$
36. Z transform $F(z)$ function of function $f(n T)=a^{n} T$
A) $\mathrm{z} /\left(\mathrm{z}-\mathrm{a}^{\mathrm{T}}\right)$
B) $z /\left(z+a^{T}\right)$
C) $z /\left(z-a^{-T}\right)$
D) $z /\left(z+a^{-T}\right)$
37. The ROC of the Z transform of a unit step function is
A) $|z|>1$
B) $|z|<1$
C) $\operatorname{Re}(Z)>0$
D) $\operatorname{Re}(Z)<0$
38. If $\mathrm{x}(\mathrm{n})$ and $\mathrm{X}(\mathrm{z})$ are the Z transform pair, Z transform of $\sum_{k=-\infty}^{\infty} x(n-k)$ is
A) $z^{-k} X(z)$
B) z^{-k}
C) $\sum_{k=-\infty}^{\infty} \mathrm{z}-\mathrm{kX}(\mathrm{z})$
D) $\sum_{k=-\infty}^{\infty} \mathrm{z}-\mathrm{k}$
39. The Z transform of the signal $x(n-2)$ is
A) $z^{4} /\left(z^{2}-16\right)$
B) $(\mathrm{z}+2)^{2} /(\mathrm{z}+2)^{2}-16$
C) $1 /\left(z^{2}-16\right)$
D) $(z-2)^{2} /(z+2)^{2}-16$
40. If $x(n)$ is right sided, $X(z)$ has a signal pole and $x(0)=2, x(2)=1 / 2$ then $x(n)$ is
A) $u(-n) / 2^{n-1}$
B) $u(n) / 2^{n-1}$
C) $u(-n) / 2^{n+1}$
D) $u(n) / 2^{n+1}$
