

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : SIGNALS AND SYSTEMS(18EC403)

Course & Branch: B.Tech - EEE

Year & Sem: II B.Tech & II Sem

Regulation: R18

<u>UNIT –I</u>

INTRODUCTION TO SIGNALS AND SYSTEMS

SHORT ANSWER QUESTIONS (2 MARKS)

1. Define a Signal. What is the relation between impulse, step, ramp and parabolic signals?

	[L1][C01][2M]
2. How are the signals are classified?	[L1][CO1][2M]
3. Define Unit impulse and Unit step Signals.	[L1][CO1][2M]
4. Distinguish between periodic and non-periodic signals	[L4][CO1][2M]
5. Distinguish causal and anti-causal signals.	[L4][CO1][2M]
6. Define Linear and Non-Linear System	[L1][CO1][2M]
7. Define time-variant and time-invariant systems.	[L1][CO1][2M]
8. How are systems classified?	[L1][CO1][2M]
9. Define stable and unstable systems.	[L1][C01][2M]
10. Define causal and non-causal systems.	[L1][C01][2M]

LONG ANSWER QUESTIONS (10 MARKS)

1. Define various elementary signals in continuous time and discrete time and indicate the	hem graphically
	[L1][CO1][10M]
2. What are the basic operations on signals? Illustrate with an example.	[L1][CO1][10M]
3. Explain the classification of signals in both continuous time and discrete time with su	itable examples.
	[L2][C01][10M]
4.(a) Find which of the signals are causal or non-causal.	[L1][C01][05M]
(i) $x(t) = e^{2t}u(t-1)$ (ii) $x(t) = 3 \operatorname{sinc} 2t$ (iii) $x(n) = u(n+4) - u(n-2)$ (iv) $x(t) = u(-n-2)$	n)
(b) Sketch the following signals	[L1][CO1][05M]
(i) $2 u(t+2) - 2 u(t-3)$ (ii) $u(t+4) u(-t+4)$ (iii) $r(t)-r(t-1)-r(t-3)-r(t-4)$ (iv) $\pi(t-2)$	
5. Find whether the following signals are periodic or not? If periodic determine the fund	amental Period
(a) $\sin 12\pi t$ (b) $3\sin 200\pi t + 4\cos 100t$ (c) $\sin 10\pi t + \cos 20\pi t$	
(d)sin (10t+1)- 2cos (5t-2) (e) $e^{j4\pi t}$	[L1][CO1][10M]
6. (a) Find the even and odd components of the following signals	[L1][CO1][05M]
(i) $x(t) = e^{j2t}$ (ii) $x(t) = (1+t^2+t^3)\cos^2 10t$ (iii) $x(n) = \{-3, 1, 2, -4, 2\}$ (iv) $x(n) = \{5, 4, 2\}$	4,3,2,1}
\uparrow	
(b)Determine whether the following signals are energy signals or power signals. Calcul	late their energy
or power?	[L1][CO1][05M]
(i) $x(t) = 8 \cos 4t \cos 6t$ (ii) $\sin^2 \omega_0 t$ (iii) $x(t) = e^{j[3t+(\pi/2)]}$ (iv) $x(n) = (1/2)^n u(n)$	
7. Define a system. How are systems classified? Define each one of them.	[L4][CO1][10M]
8. Check whether the following system is	[L1][CO1][10M]
(a) Static or dynamic (b) linear or non- linear	
(c) Causal or non- causal (d) Time invariant or time variant	
Signals and Systems	Page 1

	QUESTION BANK	2020
$(i)d^{3}y(t)/dt^{3}+2d^{2}y(t)/dt^{2}+4 dy(t)/dt+3y^{2}(t)=x(t+1)$		
$(ii)d^2y(t)/dt^2+2y(t) dy(t)/dt+3ty(t)=x(t)$		
 9. Check whether the following system is (a) Static or dynamic (b) linear or non- linear (c) Causal or non- causal (d) Time invariant or time variant 	[L1][CO1][10M]
(i) $y(n) = \log_{10} x(n) $ (ii) $y(n) = x^2(n) + 1/x^2(n-1)$	(iii) $y(t)=at^2 x(t)+b$	t x(t-4)
10.(a) Check whether the following systems are causal or not? (i) $y(t) = y^2(t) + y(t, 4)$ (ii) $y(t) = y(t/2)$ (iii) $y(n) = y(2n)$	[L1][CO1][05M]
(b) Find whether the following systems are stable or not (i) $y(t)=(t+5) u(t)$ (ii) $y(t)=(2+e^{-3t}) u(t)$ (iii) $h(n)=a^n$	[L1][for 0 <n<11< td=""><td>CO1][05M]</td></n<11<>	CO1][05M]

6. (a) Find the Fourier transform of the following [L1][CO2][05M] (iv) 1(Constant Amplitude) (i) sgn(t)(ii) $\sin \omega_0 t$ (iii) $\cos \omega_0 t$ (b). Find the Fourier transform of the following [L1][CO2][5M] (iii) $x(t) = e^{j\omega o t}$ (i) impulse function (ii) $x(t)=e^{-at}u(t)$ (iv) x(t)=u(t)7. State and Prove the properties of Continuous time Fourier transform? [L1][CO2][10M] 8. Find the Fourier transform of the following signals [L1][CO2][10M] (i) $x(t)=e^{-3t}u(t)$ (ii) $x(t)=te^{-at}u(t)$ (iii) $x(t)=e^{-t}\sin 5t u(t)$ (iv) $x(t)=e^{-t}\cos 5t u(t)$ 9. Find the inverse Fourier transform of the following signals [L1][CO2][10M] (i) $X(w) = \frac{4(jw)+6}{(jw)^2+6(jw)+8}$ (ii) X(W) = $\frac{1+3(jw)}{(jw+3)2}$ (iii) $X(w)=e^{-2w}u(w)$ 10. (a) State and prove any three properties of the DTFT. [L2][CO2][5M] (b) Find the Fourier Transform of the Signal (i) Triangular Pulse (ii) $e^{-a |t|}$ [L1][CO2][5M]

QUESTION BANK 2020

<u>UNIT –III</u>

SIGNAL TRANSMISSION THROUGH LINEAR SYSTESMS

SHORT ANSWER QUESTIONS

1 What are the mean attice of LTL sectors 2	
1. What are the properties of L11 systems?	[L1][C03][2M]
2. Define transfer function of a system?	[L1][CO3][2M]
3. Define impulse response of a system.	[L1][CO3][2M]
4. What is a filter? How are filters classified?	[L1][CO3][2M]
5. What is the Relation between unit step and impulse response?	[L1][CO3][2M]
6. Define sampling and sampling period?	[L1][CO3][2M]
7. State Sampling theorem	[L1][CO3][2M]
8. What is Nyquist rate and Nyquist interval?	[L1][CO3][2M]
9. What is anti-aliasing filter?	[L1][CO3][2M]
10. State Sampling theorem?	[L1][CO3][2M]

LONG ANSWER QUESTIONS

1. (a) Explain the Filter characteristics of linear systems explain with neat diagrams	[L1][CO3[5M]
(b) Define the following (i)Impulse Response (ii)Step Response (iii) Response of t	the System
	[L1][CO3][5M]
2. (a) Derive the transfer function and impulse response of an LTI system.	[L1][CO3][5M]
(b) Define Linear time variant, Linear time-invariant, step response of the system.	[L2][CO3][5M]
3. Discuss the properties of linear time invariant systems.	[CO3][10M]
4. (a) Consider a stable LTI System characterized by the differential equation $dy(t)/dt+2$	2y(t)=x(t), Find its
impulse response.	[L3][CO3][5M]
(b) Find the Nyquist Rate and Nyquist Interval of the following signals.	[L2][CO3][5M]
(i) $x(t)=1+\cos 2000 \pi t + \sin 4000 \pi t$ (ii) $x(t)=10 \sin 40\pi t \cos 300\pi t$	
5. (a) Let the system function of an LTI system be $1/(j\omega+2)$. What is the output of the s	system for an
input $(0.8)^t u(t)$? [L3][CO3][5M]
(b) Consider a causal LTI system with frequency response $H(\omega)=1/4+j\omega$, for a input	
x(t), the system is observed to produce the output $y(t)=e^{-2t}u(t)-e^{-4t}u(t)$. Find the input	t x(t).
	[L1][CO3][5M]
6 Consider a stable I TI system that is abaractorized by the differential equation	
b. Consider a stable L11 system that is characterized by the unreferitial equation $d^2v(t)/dt^2+4dv(t)/dt+3v(t) - dx(t)/dt+2x(t)$ find the response for an input $x(t) = d^2v(t)/dt^2$	[L5][C05][10W]
7 Find the Nyquist rate and Nyquist interval for the following signals	[[1][CO3][10M]
Signals and Systems	Page 4

(i) $x(t)=1+\cos 2000 \pi t + \sin 4000 \pi t$ (ii) 10 sin $40\pi t \cos 300\pi t$ (iii)x(t)=sinc (100 π t) + 3 sinc² (60 π t) (iv) $x(t) = 2 \operatorname{sinc} (100 \pi t)$ 8. State and prove the sampling theorem for the band-limited signals with the help of graphical representation. [L1][CO3][10M] 9. (a) Discuss about Effects of the under sampling. [L4][CO3][05M] (b) A system produces an output of $y(t) = e^{-3t} u(t)$ for an input of $x(t) = e^{-5t} u(t)$. Determine the impulse response and frequency response of the system. [L3][CO3][05M] 10. A signal $x(t) = 2 \cos 400\pi t + 6 \cos 640\pi t$ is ideally sampled at fs= 500 Hz. If the sampled signal is passed through an ideal LPF with a cut off frequency of 400Hz, what frequency components will appear in the output? Find the output signal. [L3][CO3][10M]

<u>UNIT –IV</u>

CONVOLUTION AND CORRELATION OF SIGNALS

SHORT ANSWER QUESTIONS

1. What is convolution? State the shift property of convolution.	[L1][CO4][2M]
2. State Time convolution and Frequency convolution theorem	[L1][CO4][2M]
3. What is correlation and types of correlation?	[L1][CO4][2M]
4. What are the properties of cross correlation for energy signals?	[L1][CO4][2M]
5. What are the properties of auto correlation for power signals?	[L1][CO4][2M]
6. What is the relation between convolution and correlation?	[L1][CO4][2M]
7. What are the Properties of ESD?	[L1][CO4][2M]
8. Differentiate ESD and PSD?	[L1][CO4][2M]
9. State Parseval's energy theorem?	[L1][CO4][2M]
10. State Parseval's power theorem?	[L1][CO4][2M]
LONG ANSWER OUESTIONS	
1. (a) Write the properties of convolution.	[L1][CO4][05M]
(b) Find the convolution of the following signal $x_1(t) = e^{-2t} u(t)$, $x_2(t) = e^{-4t} u(t)$	[L1]CO4][05M]
2. (a) State and prove the time convolution theorem with Fourier transforms.	[L1][CO4][05M]
(b) State and prove the frequency convolution theorem with Fourier transforms.	[L1][CO4][05M]
3. (a) Derive the relation between convolution and correlation.	[L2][CO4][05M]
(b). Write the properties of cross correlation for energy signals	[L1][CO4][05M]
4. (a) State and prove the Parseval's theorem for energy signals.	[L3][CO5][05M]
(b) State and prove the Parseval's theorem for power signals.	[L3][CO4][05M]

5. (a) Derive and Define the properties of Energy Spectral Density.(b) Derive and Define the properties of Power Spectral Density

- 6. (a) Show that R(r) and ESD form Fourier transform pair.
- (b) Show that R(r) and PSD form Fourier transform pair.

7. (a) Verify Parseval's theorem for the energy signal $x(t)=e^{-4t} u(t)$.

(b) Determine the autocorrelation function and energy spectral density of $x(t)=e^{-at} u(t)$.

[L3][CO4][05M]

[L1][CO4][05M]

[L1][CO4][05M]

[L1][CO4][05M]

[L1][CO4][05M]

[L2][CO4][05M]

QUESTION BANK 2020	
8. (a) Find the autocorrelation of the signal $x(t) = a \sin (\omega_0 t + \theta)$.	
(b) Distinguish the ESD and PSD. [L3][CO4][05M]	
[L4][CO4][05M] 9. (a) Explain the detection of periodic signals in the presence of noise by auto correlation.	
[L1][CO4][05M] (b) Explain the detection of periodic signals in the presence of noise by cross correlation	
[L1][CO4][05M] Explain the extraction of noise by Filtering.	

[L1][CO4][10M]

<u>UNIT –V</u>

LAPLACE TRANSFORMS AND Z-TRANSFORMS

SHORT ANSWER QUESTIONS

1. What is the Region of Convergence (ROC)?	[L1][CO5][2M]
2. What is the relation between Laplace transform and Fourier transform?	[L1][CO5][2M]
3. State initial value theorem and final value theorem of Laplace transform.	[L1][CO5][2M]
4. What are the properties of ROC?	[L1][CO5][2M]
5. What is the Laplace Transform of Parabolic Function.?	[L1][CO5][2M]
6. What is the relation between Discrete-time Fourier transform and Z-transform?	[L1][CO5][2M]
7. What is the Z-transform of unit step signal?	[L1][CO5][2M]
8. Find Z-transform and ROC of $x(n)=(1/2)^n u(n-2)$	[L1][CO5][2M]
9. State the Convolution Property of Z-transform	[L1][CO5][2M]
10. Discuss the comparison of Laplace and Z-Transform.	[L1][CO5][2M]

LONG ANSWER QUESTIONS

1. State and prove the any five Properties Laplace Transform	[L3][CO5][10M]
2. (a) Find the Laplace transform of the signal $x(t) = e^{-at} u(t) - e^{-bt} u(-t)$ and also find its	s ROC
	[L1][CO5][05M]
(b) Find the Laplace transforms and region for the following signals	[L1][CO5][05M]
(i)x(t)=e ^{-5t} u(t-1) (ii)x(t)=e ^{2t} sin2t for $t \le 0$ (iii) x(t)=t e ^{-2 t}	
3. Find the Laplace transform of the following signals using properties of Laplace transform	nsform
	[L1][CO5][10M]
(i) $x(t)=t e^{-t} u(t)$ (ii) $x(t)=t e^{-2t} \sin 2t u(t)$ (iii) $x(t)= \sin at/t$ (iv) $x(t)=1-e^{t}/t$	
4. Find the inverse Laplace transform of the following	[L1][CO5] [10M]
(a) $X(s) = 1/s(s+1)(s+2)(s+3)$ (b) $X(s) = (3s^2+22s+27)/(s^2+3s+2)(s^2+2s+5)$	
(c) $X(s)=s/(s+3)(s^2+4s+5)$	
5. (a) Find the convolution of the sequences:	
(i) (ii)	[L1][CO5][05M]
(b) Discuss about the Properties of the ROC of Laplace transform	
	[L3][CO5][05M]
6. (a) State and prove time differentiation and time integration property of Laplace tra	nsform
	[L1][CO5][05M]
(b). Find the Laplace transform for any 5 standard signals	[L1][CO5][05M]
7. Find the inverse z-transform of:	[L1][CO5][05M]
$X(z)=3z^{-1}/(1-z^{-1})(1-2z^{-1})$	
(a) If ROC; $ z >2$ (b) If ROC; $ z <1$ (c) If ROC; $1< z <2$	
8. (a) Find the inverse Z-transform of X(z) given X(z) = $1/(1-az^{-1})$, ROC; $z > a $	[L1][CO5][05M]
(b) Find the convolution of the sequences:	[L1][CO5] [05M]
$x_1(n) = (1/2)^n u(n)$ and $(1/3)^{n-2}u(n)$	
9. (a) State and prove initial and final value theorems of Z-transform?	[L3][CO5][05M]
(b) Using the Properties of Z-transform. Find the Z-transform of following signals	
	[L1][CO5][05M]
(i) $x(n)=u(-n)$ (ii) $x(n)=2^n u(n-2)$ (iii) $2(3)^n u(-n)$	
Signals and Systems	Page 7

QUESTION BANK	2020
---------------	------

10. (a) Prove that the final value of x(n) for $X(z) = z^2/(z-1)(z-0.2)$ is 1.25 and its final value is unity?[L3][CO5] [05M](b). Find the inverse Z-transform of $X(z) = z^{-1}/(3-4z^{-1}+z^{-2})$, ROC: |z| > 1[L1][CO5][05M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

ear & Sem: II B.Te	ch & I Sem	Regula	tion: R18	
		<u>UNIT – I</u>		
	INTRODUCTION	TO SIGNALS AND SYST	<u>'EMS</u>	
1. In continuous t	time signal, independ	lent variable nature is	[]
A) Continuous	B) Discrete	C) Exponential	D) None	
2. In discrete time	e signal, independent	t variable nature is	_ []
A) Continuous	B) Discrete	C) Exponential	D) None	
3. Generally x (t	+2) means		[]
A) x (t) delayed by	v 2 units B) x(t) adva	nced by 2 units C) x(t) delay	yed by 4 units D) no	ne
4. Generally x(t -	2) means		[]
A) x(t) delayed by	2 units B) x(t) advar	nced by 2 units C) x(t) delay	red by 4 units D) nor	ne
5. Generally x(2n) means		[]
A) Expansion vers	sion of x(n) B	Compression version of x(n)	
C) Delayed versio	on of x(n) D))none		
6. Generally x(n/2	2) means		[]
A) Expansion vers	sion of x(n) B	b) Compression version of x((n)	
C) Delayed versio	on of x(n) D) none		
7. A discrete sign	al is said to be period	dic signal, it satisfy	_ condition []
A) $x(n) = x(2n)$	B) x(n)=	x(n+N) C) $x(t)=x(t+T)$	D) None	
8 is the f	fundamental period o	of $x(n) = \cos 0.02\pi n$	[]
A > 1/100 D	100 C) 200	D) None		
A) 1/100 B)				г
A) 1/100 B)9. A signal is said	l to be even signal, it	t satisfy condition	[]
A) $1/100$ B) 9. A signal is said A) $x(-t) = x(t)$	to be even signal, it B) $x(-t) = -x(t)$	t satisfy condition C) $x(t) = x(t^2)$ D) Nor	ne []

QUE	ESTION BANK	2020
A) $0 \le x \le \infty $ and $p = 0$ B) $0 \le x \le \infty $ b) = 0 \le x \le \infty b) $0 \le x \le \infty $ b) = 0 \le x \le \infty b) $0 \le x \le \infty $ b) = 0 \le x \le \infty b) $0 \le x \le \infty $ b) = 0 \le x \le \infty b) $0 \le x \le \infty $ b) = 0 \le x \le \infty b) $0 \le x \le \infty $ b) = 0 \le x \le \infty b) $0 \le x \le \infty $ b) = 0 \le x \le \infty b) $0 \le x \le \infty $ b) = 0 \le x \le \infty b) $0 \le x \le \infty $ b) = 0 \ge x \le \infty b) $0 \le x \le \infty $ b) = 0 \ge x \le \infty b) $0 \le x \le \infty $ b) = 0 \ge x \le \infty b) $0 \le x \le \infty $ b) = 0 \ge x \le \infty b) $0 \le x \le \infty $ b) = 0 \ge x \le \infty b) $0 \le x \le \infty $ b) = 0 \ge x \le \infty b) = 0 \ge 0 \ge \infty b) = 0 \ge 0 \ge \infty b) = 0 \ge \infty b) = 0 \ge 0 \ge \infty b) = 0 \ge \infty b) = 0 \ge \infty b) = 0 \ge 0 \ge \infty b) = 0 \ge \infty b) = 0 \ge \infty b) = 0 \ge \infty	None	
11. A signal is said to be power signal, it satisfy condition]	1
A) $0) 0) 0)$	None	-
12. Following statement is true for unit impulse signal]	1
$\delta(n)=1$ for $n\neq 0$ B) $\delta(n) = 1$ for $n=0$ C) $\delta(n)=0$ for $n=0$ D)	None	-
13 Following statement is true for unit step signal	ſ	1
A) $u(n)=1$ for $n < 0$ B) $u(n)=1$ for $n > 0$ C) $u(n)=1$ for $n=0$	D)None	1
14 is the relation between unit impulse & unit step signal]	1
A) $\delta(n) = u(n) \cdot u(n-1)$ B) $\delta(n) = u(n)$ C) $\delta(n) = u(n) - u(n-1)$	(1) D)None	1
15 Following statement is true for continuous time unit step	r) D)rtone	1
A) $u(t)=1$ for $t>0$ B) $u(t)=1$ for $t<0$ C) $u(t)=1$ for $t=0$ D)	None]
A) $u(t) = 1$ for $t > 0$ b) $u(t) = 1$ for $t > 0$ c) $u(t) = 1$ for $t = 0$ b) $u(t) = 1$ for $u(t) $	r r	1
A) superposition property B)homogeneity property C)a& b	D) None	1
A) superposition property B)noniogeneity property C)ac b 17 y(t) = 2 y(t) system is linear or poplinger		1
$\begin{array}{c} 17. y(t) = 2 x(t), \text{ system is linear of nonlinear} \\ 18. $	Nono	1
A) Effect B) Nonlinear C) both D) 18 $y(t)$ -cin $y(t)$ then system is time variant or time invariant	r	1
10. $y(t)$ -sin $x(t)$, then system is time variant of time invariant (A) Time variant (B) Time invariant (C) both (D)	Nono]
A) Time variant B) Time invariant C) both D) 10. $v(n)=2 v(n) v^2(n)$ system is memory or memory lass	r	1
$\begin{array}{c} 19. \ y(n) = 2 \ x(n) - x \ (n), \ system is memory of memory less \\ A) \ Memory less \\ B) \ memory \\ C) \ both \\ D) \end{array}$	nono]
A) Memory less B) memory C) both D) 20. $y(p)=y(p-1)$ system is causal or non-causal	г	1
(1) = X(1) - X	D) nono	J
A) Non causar B) causar C)both 21. Concretily, $y(t \mid 2)$ means	D) none	1
A) $y(t)$ deleved by 2 units $D(t)$ educated by 2 units C both	D) Nono	J
A) $x(t)$ delayed by 5 units B) $x(t)$ advanced by 5 units C) both	D) None	1
22. A continuous signal is said to be periodic signal, it satisfy		J
A) $x(n) - x(2n)$ B) $x(n) - x(n+N)$ C) $x(n) - x(n+N)$	(+1) D)1	1
25 is the fundamental period of $\chi(n)$ -cos 0.04/m	L]
A) 100 B) 200 C) 500 D) 50 24 $y(t) = 8 y(t)$ system is linear or poplinger	г	1
24. $y(t)=8 x(t)$, system is linear or nonlinear (A) Linear (B) perlinear (C) both (D) None	L]
A) Linear B) nonlinear C) both D) None	г	1
A) Consister D) inductor C) register D) Martin	L]
A) Capacitor B) inductor C) resistor D) None	_	1
26 Consequence $w(4n)$ means		

QUESTIC	ON BANK 2020	
C) Delayed version of x(n) D)none		
27. Generally x(t-3) means	[]	
A) x(t) delayed by 3 units B) x(t) advanced by 3 units C) both	D) None	
28. $y(n)=x(n)+x(n-1)$, system is memory or memory less	[]	
A) Memory B) memory less C) both	D) None	
9. Fourier series is used to analyze signals]]
A) Periodic B) non periodic C) both	D) none	
0. For the existence of Fourier series, Dirichlet's conditions are	[]
A) Necessary B) Sufficient C) Necessary and sufficient	cient D) none	
1. The net areas of sinusoids over complete periods are]]
A) Finite B)Infinite C) Zero D) none		
2. In the trigonometric Fourier series representation of a signal, a_0 is the	e []
A) RMS valueB) Mean Square Value C) Peak Value	D) Average Value	
33. In the trigonometric Fourier series representation of an even function	n consists of []
A) Cosine terms B) Sine terms C) both sine and cosin	ne D) None	
4. The coefficient a _n is zero for functions	[]	
A) EvenB) OddC) both A and BD) None		
35. In the trigonometric Fourier series representation of an ODD function	on consists of []	
A) Cosine terms B) Sine terms C) both sine and cosin	ne D) None	
6. The coefficient b_n is zero for functions	[]	
A) Even B) Odd C) both A and B D) None		
37. The mostly used Fourier series is	[]	
A) Trigonometric series B) Exponential series C) Cosine series	es D) None	
29 The function of non-nonicidia signal is	[]	
8. The frequency spectrum of non periodic signal is		
A) Continuous B) Discrete C) both continuous and discrete	D) None	
 A) Continuous B) Discrete C) both continuous and discrete 39. The time domain representation of a signal graphically is called 	D) None []	
 A) Continuous B) Discrete C) both continuous and discrete 39. The time domain representation of a signal graphically is called A) Waveform B) Spectrum C) Magnitude D) None 	D) None	
 A) Continuous B) Discrete C) both continuous and discrete The time domain representation of a signal graphically is called A) Waveform B) Spectrum C) Magnitude D) None The frequency spectrum of a periodic signal is 	D) None []]

<u>UNIT – II</u>

FOURIER SERIES and FOURIER TRANSFORMS

QUESTI	ON BANK	2020
A) $X^*(\omega)$ B) $X^*(-\omega)$ C) $-X^*(\omega)$ D) $-X^*(-\omega)$		
13. The Fourier transform of $\frac{dx(t)}{dt}$ is	[]
A) $\frac{d\omega}{\omega}X(\omega)$ B) $\frac{1}{\omega}X(\omega)$ C) $j\omega X(\omega)$ D) $\frac{j\omega}{X(\omega)}$		
14. The Fourier transform of $x(at) =$	[]
A) $\frac{1}{ a } X\left(\frac{\omega}{a}\right)$ B) $\frac{1}{ a } X(a\omega)$ C) $\frac{1}{ a } X\left(\frac{a}{\omega}\right)$ D) $\frac{1}{ \omega } X\left(\frac{\omega}{a}\right)$		
15. The Fourier transform of a unit impulse function $\delta(t)$ is	[]
A) $1/\omega$ B) 1 C) ω D) $1/j\omega$		
16. The Fourier transform of $\delta(t - t_0)$ is	[]
A) $e^{j\omega t_0}$ B) $e^{-j\omega t_0}$ C) e^{-jt_0} D) $\delta(t-t_0)$		
17. The Fourier transform of $e^{-at} u(t)$ is	[]
A) $\frac{1}{a^2 + w^2}$ B) $\frac{1}{a - iw}$ C) $\frac{1}{a + iw}$ D) $\frac{1}{a^2 - w^2}$		
18. The Fourier transform of x(-t) is	[]
A) $X(\omega)$ B) $X(-\omega)$ C) $X(\frac{1}{\omega})$ D) -X(\omega)	υ)	
19. The FT of $x_1(n) * x_2(n)$ is	[1
A) $X1(\omega) X(\omega)$ B) $X1(\omega) X2(\omega)$ C) $X1(\omega) * X2(\omega)$ D) Does	sn't exits	-
20. The FT of $\delta(t)$ is	[]
A) 0 B)1 C) ∞ D) not defined		
21. The F.T of $d2/dt [x(t-2)]$ is	[]
A) $X(j\omega/2)/-\omega^2$ B) $-\omega^2 X(j\omega/2)$ C) $X(j\omega) ej2\omega$ D) $-\omega^2 e^{-\omega^2}$	e ^{-j2} ωx(jω)	
22. The FT of $x(n)$ * $h(n)$ is	[]
$A)X(\omega)H(\omega) B)X(\omega)^*H(\omega) \qquad C)X(\omega)H(-\omega) \qquad D)X(\omega)^*H(-\omega)$)	
23. The FT of analog signal consists of a spectrum with frequency range	[]
A)- π to π B) 0 to 2 π C)0 to ∞ D)- ∞ to ∞		
24. The DTFT of $x(n) = 2^n u(n)$ is	[]
(A) $1/1 - 2e^{-j\Omega}$ (B) $e^{j\Omega}/1 - 2e^{-j\Omega}$ (C) $1/1 + 2e^{-j\Omega}$ (D) non	ie	
25. DTFT is a special case of	[]
(A) Z- transform (B) Laplace transform (C) continuous time F.T	(D) none	
26. Z transform of $x(n)$ is the DTFT of	[]
(A) $x(n)r-n$ (B) $x(n)rn$ (C) $x(n)u(n)$ (D) $x(n)r(n)$		
27. The F.T of u(t) is	[]
Signals and Systems		Page 12

(A) $\pi\delta(\omega)$	(B) 1/jω	(C) 1/jω	(D) None			
28. The inverse I	F.T of jω/(1+1/j	ω)2 is			[]
(A) (t-1) e-t u	u(t) (B) (1	-t) e-t u(t)	(C) (1+t) e-t	u(t) (D) -(1+t)	t) e-t u(t)	
29. The frequenc	y response of L	.TI system is g	iven by the FT	of theof the s	system []
A) transfer fu	inction B)out	put C)im	pulse function	D)input		
30. The FT of $x(x)$	n)*h(n)				[]
A) $X(\omega)H(\omega)$	B) X(ω)*H(ω)C)X	$(\omega)H(-\omega)$	D) X(ω)*H(- ω)		
31. The FT of an	alog signal con	sists of a spect	rum with freque	ency range	[]
A) - π to π	B) 0 t	ο 2 π	C) 0 to ∞	D) - ∞ to ∞		
32. The FT of a c	liscrete-time sig	gnal is unique	in the range		[]
A) $-\pi$ to π	B) 0 t	ο 2 π	C) 0 to ∞	D) - ∞ to ∞		
33. The FT of δ (n)is				[]
A) 0	B) 1	C) ∞	D) not define	d		
34. The FT of u(n)				[]
A) 1/1- <i>e ^{jω}</i>	B) 1/1-e ^{-jω}	C) 1/1-ω	D) 1/1-jω			
35. The FT of a ⁿ u	u(n)				[]
A) 1/1-ae ^{jω}	B)1/1-a $e^{-j\omega}$	C)1/1-ja ω	D)1/1+aj ω			
36. The FT of –a	$^{n}u(-n-1)$ is				[]
A) 1/1-ae ^{jω}	B)1/1-a $e^{-j\omega}$	C)1/1-ja ω	D)1/1+aj ω			
37. The FT of 2^{r}	u(n) is				[]
A) 1/1-2e ^{jω}	B)1/1	$-2e^{-j\omega}$	C) 1/1+2 <i>e^{jω}</i>	D) doesn	ot exists	
38. The FT of δ	$(n+2) - \delta(n-1)$	2) is			[]
A) 2j sin2 ω	B) 2 c	$\cos 2 \omega$	C) sin2 w	D) $\cos 2 d$	ω	
39. The FT of x()	n) coswon is				ſ	1
A) $1/2{X(\omega + \omega)}$	$(\omega_0) + \mathbf{X}(\omega - \omega_0)$	B) ½	$\{X(\omega + \omega_0) + X(\omega)\}$	$\omega + \omega_0$	-	-
$C) X(\omega)$	•/ (•/)	D) no	ne	~/)		
$40 \text{The FT of } \mathbf{x}$	(-n) is	\mathcal{L}_{f} in	·		r	1
$(\mathbf{A}) \mathbf{X}(\mathbf{a})$	$\frac{1}{1} \frac{1}{13}$	C) Y	$(\omega + 1)$	D) none	L	Ţ
$A_j A(\omega)$		C/Λ				

			QUESTION BA	NK	2020	
	UN	IT –III				
SIGN	AL TRANSMISSION	THROUGH LINEA	R SYSTEMS			
1. The characteristics	of an LTI system are co	mpletely characterized	by its	ſ	1	
A) Impulse respons	e B) step response	C) transfer function	D) none	-	-	
2. For defining a trans	fer function, the initial	conditions must be take	en as	ſ	1	
A) Zero	B) infinite	C) finite	D) none	-	-	
3. The spectral density	y function of the input si	gnal x(t) is given by	,	ſ	1	
A) X(ω)	B) H(@)	C) Y(@)	D) X ² (0)	-	-	
4. A linear time invari	ant system with an imp	ulse response h(t) prod	uces output y(t)	whe	n an inp	ut
x(t) is applied. Whe	en an input $x(t-\tau)$ is appl	ied to a system with a	impulse respons	e h(t	$-\tau$),the	
output will be(Gate	-2009)	ý	1 1	ſ	1	
A) $Y(\tau)$	B) $Y(2(t-\tau))$	C) $Y(t-\tau)$	D) $Y(t2\tau)$	L	1	
5. The probability dens	ity function of the envel	ope of narrow band G	aussian noise is	ſ	1	
A) Poisson	B) Gaussian	C) Ravleigh	D) Rician	L	L	
6. The significance of F	PSD is	-,,8	_ ,	ſ	1	
A) amplitude	B) frequency	C) unit band width	D) phase	L	1	
7. The PSD of a real va	lued random process is	function of frequency	, priase	ſ	1	
A) Even	B) odd	C) symmetric	D) unsymmet	ric	J	
8 A linear system poss	esses the important pror	perty of		1	1	
A) superposition	B) variation	C) constancy	D) none	L	Ţ	
9 A system whose beh	avior and characteristics	of the system are five	d over time is c	alled	r 1	
A) time variant	B) time invariant	C) linear	D) none	uncu	LJ	
10 for distortion less tr	D) this invariant	de H(w) is	D) none	r	1	
(10.101 distortion less tr)	B) Infinite	C) Constant	D) linear	L	1	
11 A transmission is a	b) minute	c) constant	exact replice of	tha ?	innut ci	anal
$\frac{\Delta}{2}$ noise less	B) distortion less	C) causal	D) none	Г	111211 II	gnai
$12 \text{Ti}\delta(n) = 12$	D) distortion less	C) causar	D) none	L r	ı ı	
12. $1[0(n)] =$				L]	
A) $h(n)$	B) H(s)	C) H(n)	D)none		r	-
13. In time domain, a	linear system is describe	ed in terms of its			L]
A) unit step	B)ramp	C)impulse response	D)none	r	-	
14. for distortion less t	ransmission the phase r	nust be		L]	
A) Zero	B) Infinite	C) Constant	D) linear	r		
15. for distortion less s	system, the response mu	ist be of the i	nput signal	L]	
A) Exact replica	B) different	C) non-linear	D) none			

	QUESTION BANK	2020
16. In time variant system, if $y(n)=H[x(n)]$ then $y(n-k)=$		1
A) $H[x(n+k)]$ B) $h[x(n-k)]$ C) $h[x(n+k)]$] D) none	-
17 criterion is a test which distinguish between a	physically realizable characte	eristics from
an unrealizable	[]
A) Paley wiener B) drichlet's C) Pascal's	D) none	
18. $\int_{-\infty}^{\infty} H(\omega) ^2 d\omega$ should be	[]
A) >0 B)=0 C)<∞	D)none	
19. For distortion transmission the system bandwidth must b	e equal to []
A) Signal bandwidth B) infinite C) ¹ / ₂ signal bandwid	dth D) 2 times signal b	andwidth
20. A system is defined by impulse response $h(n)=2^n u(n-2)$.t	the system is(Gate2011) []
A) Linear B) nonlinear C) unstable	D) stable	
21. $y(n) = 3x(n+3)$]]
A) Linear B) nonlinear C) both	D) None	
22 filter passes high frequency signals	[]
A) Low pass B) high pass C) band pass	s D) None	
23. $y(n) = k \Delta x(n)$, where $\Delta x(n) = [x(n+1)-x(n)]$	[]
A) Linear B) nonlinear C) both	D) None	
24. h (t)= $e^{-2t}u(t-1)$	[]
A) Non causal B) causal C) both	D) None	
25. $h(t) = e^{-2t}u(t-1)$	[]
A) StableB) unstableC) both	D) None	
26. Rise time is proportional to the cutoff freq	uency of the filter []
A) directly B)inversely C) linearly	D)none	
27. A signal is said to be causal if it is zero for	[]
A) $t=\infty$ B) $t>0$ C) $t<0$ D)none		
28. The of a system is arbitrarily defined as the interv	al of frequencies over which	the
magnitude $ H(\omega) $ remains with in $1/\sqrt{2}$ times its value at	the midband []
A) beam width B) band width C) pulse width	th D) none	
29. The signal distortion depends on the of the syste	em []
A) beam width B) band width C) pulse wide	th D) none	
30. In time variant system, if $y(n)=H[x(n)]$ then $y(n-k)=$]]
A) $H[x(n+k)]$ B) $h[x(n-k)]$ C) $h[x(n-k)]$	D)none	

31criterion is tests	which distinguish betw	ween a physica	ally realizable chara	cteristics	from on
unrealizable charact	eristics			[]
A) Paley wiener	B)drichlet's	C)Pascal's	D) none		
32 filter passes lov	w frequency signals			[]
A) Low pass	B) high pass	C) band pass	D) None		
33 filter passes ba	and of frequency signals	5		[]
A) Low pass	B) high pass	C) band pass	D) None		
34. An energy signal ha	as G(f)=10.Its energy de	ensity spectrum	is(Gate-2011)	[]
A) 10	B)100	C)50	D)20		
35. Which one is time in	variant system?(Gate-2	2013)		[]
A) $y(n)=x(2n)$	B) $y(n)=x(n) x(n-1)$	C) y(n)=x(n/2) D) none		
36. The function $\delta(t - b)$	is(Gate-2010)			[]
A) An impulse funct	tion	B) a step func	tion originating at t =	= b	
C) An impulse funct	tion originating at $t = b$	D) None			
37. For distortion less tr	ansmission the amplitud	de response is		[]
A) Zero	B) Infinite	C) Constant	D) linear		
38. For distortion less tr	ansmission the phase re	sponse is		[]
A) Zero	B) linear	C) Constant	D) linear		
39. The output of an LTI system is equal to unit impulse when input is]
A) $\delta(t)$]	B) u(t)	C) r(t)	D) all the above		
40. For distortion transm	nission the bandwidth o	f the system is		[]
A) Finite	B)infinite	C) zero	D)very small		

UNIT-IV CONVOLUTION AND CORRELATION OF SIGNALS 1. It is possible to compute the cross correlation Rxy(t) between two signals x(t) and y(t) directly from their convolution provided 1 ſ B) x(t) has odd symmetry A) x(t) has even symmetry C) y(t) has even symmetry D) y(t) has odd symmetry 2. $x(t) = 10\pi(t/4)$ and $y(t) = [\delta(t-1) + \delta(t-5)]$. then x(t)*y(t) is] [A) $10\pi((t-3)/4)$ B) $10\pi((t-4)/4)$ C) 10 $[\pi((t-3)/4) + \pi((t-5)/4)]$ D) none 3. $X(t) = 5\pi(t/4)$, the waveform of Rxx(t) is ſ] A) Rectangular B) triangular C) trapezium D) none 4. $X(t) = 10\pi(t/10)$, Sxx(f) is 1 A) a sinc function B) a triangular function C) a sinc square function D) a rectangular function 5. $X(t) = 5\pi(t/10)$, the maximum value of Rxx(t) is 1 A) 250 B) 50 C) 500 D) 25 6. $X(t) = 10\pi(t/10)$, the maximum value of Sxx(0) is 1 ſ A) 100 B) 1000 C) 500 D) 5000 7. $X(t) = 10\pi(t/10)$, the total area under the Sxx(f) curve is] ſ A) 1000 B) 500 C) 100 D) 10000 8. The signal e-t u(t) is applied as input to an L-section RC low pass filter with time constant =1 The energy spectral density at the output of the filter at the 3-dB cutoff frequency of the filter is ſ] A) 1 B) 0.5 C) 0.25 D) 1.5 9. $x(n) = \{1, -1, 2, -2\}$ Then rxx (0) is 1 ſ A) 0 **B**) 10 C) 12 D) 8 10. if x(n) is of finite duration and has N samples, rxx (k) wil have a duration of 1 D) (2N+1) samples A) 2N samples B) N2 samples C) (2N-1) samples 11. x(n)=2-n u(n). then rxx (0) is ſ 1 A) 1/3 B) 2/3 C) 1 D) 4/3 12. x(n)=(0.5)-n u(-n). then rxx (0) is ſ] A) 4/3 **B**) 1 C) 2/3 D) 1/3 13. FFT can be used for a computation of ſ 1

Signals and Systems

QUESTION BANK 2020

	A) linear convolution but	not circular conv	volution B) circular	convolution but not	linear	
	convolution C) both linear convolutions	r and circular co	nvolutions	D) neither linear n	or circular	
14	If $r_{xy}(3)=12$ for $x(n)=\{4,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,$	2,2,0,4} and y(n)=	= {3,0,-3,6}, what i	s $r_{xy}(2)$ if $x(n) = \{2, -1\}$,1,0,2} and	d
	$y(n) = \{0.5, 0, -0.5, 1\}$				[]	
	A) 3	B) 2.5	C) 2	D) 1		
15	$x(n) = \{2, -1, 3, -2\}$. What is	the value of r_{xy} (0))		[]	
	A) 2	B) 1.414	C) 18	D) 4		
16	$x(n) = \{5,5,5,5,5\}$ and $y(n)$	= {20,20, 1.414,2	20,-30}. The upper	bound for $ r_{xy}(k) $ is	[]	
	A) 50	B) 50	0	C) 100		
	D) 25					
17	The total area under the PS	SD is equal to the	e	of the signal	[]
	A) Average power B)	average energy	C) total energy	D) total power		
18	The convolution of $x(t)$ a	nd h(t) is given b	y y(t)= $\int_{o}^{t} \mathbf{x}(\mathbf{\tau}) h(t)$	(- au)d au, then]]
	A) Both x(t) and h(t) are c	ausal	B) Both $x(t)$ as	nd h(t) are non-causa	.1	
	C) $x(t)$ causal and $h(t)$ is	non-causal	D) h(t) is causal	and x(t) is non-causa	.1	
19	The convolution of $x(t)$ a	nd h(t) is given b	$y y(t) = \int_{-\infty}^{\infty} x(\tau) h(\tau)$	$(t-\tau)d\tau$, then []	
	A) Both x(t) and h(t) are c	ausal	B) Both $x(t)$ as	nd h(t) are non-causa	l	
	C) $x(t)$ causal and $h(t)$ is	non-causal	D) h(t) is causal	and x(t) is non-causa	.1	
20	The convolution of $x(t)$ a	nd h(t) is given b	y y(t)= $\int_{-\infty}^{t} \mathbf{x}(\mathbf{\tau}) h(\mathbf{\tau})$	$(t-\tau)d\tau$, then	[]	
	A) Both x(t) and h(t) are c	ausal	B) Both $x(t)$ as	nd h(t) are non-causa	.1	
	C) $x(t)$ causal and $h(t)$ is	non-causal	D) h(t) is causal	and x(t) is non-causa	.1	
21	The convolution of $x(t)$ a	nd h(t) is given b	$y y(t) = \int_0^\infty x(\tau) h(t)$	$(\tau - \tau) d\tau$, then []	
	A) Both x(t) and h(t) are c	ausal	B) Both $x(t)$ as	nd h(t) are non-causa	.1	
	C) $x(t)$ causal and $h(t)$ is	non-causal	D) h(t) is causal	and x(t) is non-causa	.1	
22	The time convolution theo	rem states that F	$[x_1(t)^*x_2(t)] =$		[]	
	A) $X_1(w)X_2(w)$	B) $X_1(w) * X_2(w)$	C) 1/2π [$X_1(w)X_2(w)$]	D) 1/2π	
	$[X_1(w) * X_2(w)]$					
23	The frequency convolution	n theorem states t	hat $F[x_1(t) x_2(t)] =$	=	[]
	A) $X_1(w)X_2(w)$	B) $X_1(w) * X_2(w)$	C) 1/2π [$X_1(w)X_2(w)$]	D) 1/2π	
	$[X_1(w) * X_2(w)]$					
24	The autocorrelation function	on and PSD form	apair			

		Q	UESTION BANK	2020	
A) Fourier Transforr series	n B) Laplace Transfor	rm C) Z- Transform	ı D) F	Fourier	
25. The condition for ort	hogonality of two func	ctions $x_1(t)$ and $x_2(t)$ in te	rms of correlation	is []
A) $R_{12}(\tau) = \infty$	B) $R_{12}(\tau) = 0$	C) $R_{12}(\tau) = 1$			
D)R12 $(\tau) = finite$					
26. The autocorrelation i	s maximum at		[]	
A) $\tau = 0$	B) $\tau = \infty$	C) <i>τ</i> = 1	D) $\tau = non$	е	
27. The autocorrelation	function and ESD form	n apair			
A) Fourier Transform	n B) Laplace Transfor	m C) Z- Transform	n D) F	ourier	
series					
28. The Fourier transform	n of the cross correlat	ion of two signals $x_1(t)$ as	nd $x_2(t)$ is equal to	[]
A) $X_1(w)X_2(w)$	B) $X_1(w)^*X_2$	(w) C) X_1^* (w) X ₂ * (w)		D)
none					
29. The cross correlation	of $x_1(t)$ and $x_2(t)$ is the	e same as the convolution	ı of	[]
A) $x_1(t)$ and $x_2(-t)$	B) $x_1(t)$ and $x_2(t)$	C) $x_1(-t)$ and $x_2(t)$	D) $x_1(-t)$ and	d x ₂ (-t)	I
30. The distribution of a	verage power of the sig	gnal in frequency domain	is called		
A) EDS	B) PDS	C) EDS and PDS	D) N	lone	
31. The total area under	the EDS is equal to the	e of the	signal	[]
A) Average power	B) average energy	C) total energy I)) total power		
32. The distribution of p	ower or energy of a sig	gnal per unit bandwidth is	called[]	
A) EDS	B) PDS	C) EDS and PDS	D) N	lone	
33. The time convolution	n theorem states that		[]	
A) $x1(t) * x1(t) =$	X1(w)X2(w)	B) $x1(t) * x1(t) = X1(w)$	')*X2(w)		
C) $x1(t) * x1(t) =$	$1/2\pi [X1(w) *X2(w)]$)]D) x1(t) * x1(t) = $1/2$	$\pi [X1(w)X2(w)]$		
34. The autocorrelation f	function is maximum a	.t	[]	
A) Origin	B) Top	C) bottom I)) None		
35. If $R_{xy}(0)=0$ then the	signals are			[]
A) Orthogonal	B) non orthogonal	C) both orthogonal and	non-orthogonal	D)	
None				_	_
36. The convolution of s	ignals with an impulse	is equal to]
A) A signal itself	B) amplitude	differentC) time period (litterent D) N	None	٦
37. The cross correlation	1 OI Sig	nais is zero		l]

				QUESTION BANK	2020	
	A) Orthogonal	B) non orthogonal	C) both orthogonal a	nd non-orthogonal	D)	
38.	None The autocorrelation fu	nction at origin is equ	al to the	[]	
	A) Average power	B) average energy	C) total energy	D) total power		
39.	The distribution of en	ergy of a signal in free	quency domain is calle	ed	[]
	A) EDS	B) PDS	C) EDS and	PDS D)	None	
40.	Correlation of two sig	nals is a measure of	between the	ose signals	[]
	A) difference	B) similarity	C) comparison	D) Not	ne	

<u>UNIT-V</u>

LAPLACE TRANSFORM & Z-TRANSFORM

the system A) $e^{-2t} u(t)$ 12. $X(s) = L[x(t)]$ A) $X(s)$ 13. Given $x(t) ↔$ A) $e^{-j2t} x(t)$	B) $2/(s+2)$ unction of an B) $u(t-2)$, then $L\{d^n/dt$ B) $s^nX(s)$ X(s) be a Lap B) e^{-2}	C) $1/(s+2)$ LTI system is § C) $\delta(t-2)$ ⁿ x(t)} is C) $[X(s)]^n$ blace transform ^{2t} x(t) C) e ²	D) $2s/(1+2s)$ given by $H(s) = e^{-2s} . W$ D) $e^{2t} u(t)$ D) $d^n/ds^n X(s)$ pair then the inverse $e^{2t} x(t)$ D) $e^{j2t} x(t)$	What is the imput	lse resj [[m of X	ponse of]] [(s+2j) is]
A) $e^{-2t} u(t)$ 12. X(s) = L[x(t)] A) X(s) 13. Given x(t) ↔	B) $2/(s+2)$ unction of an B) $u(t-2)$, then $L\{d^n/dt$ B) $s^nX(s)$ X(s) be a Lap	C) $1/(s+2)$ LTI system is $\{C, \delta(t-2)\}$ $n^{n}x(t)\}$ is C) $[X(s)]^{n}$ blace transform	D) $2s/(1+2s)$ given by $H(s) = e^{-2s} . W$ D) $e^{2t} u(t)$ D) $d^n/ds^n X(s)$ pair then the inverse	What is the impu Laplace transfor	lse resj [[m of X	ponse of]] [(s+2j) is
(he system A) $e^{-2t} u(t)$ 12. $X(s) = L[x(t)]$ A) $X(s)$	 B) 2/(s+2) unction of an 1 B) u(t-2) , then L{dⁿ/dt B) sⁿX(s) 	C) 1/(s+2) LTI system is § C) δ(t-2) ⁿ x(t)} is C) [X(s)] ⁿ	D) $2s/(1+2s)$ given by $H(s) = e^{-2s} . V$ D) $e^{2t} u(t)$ D) $d^n/ds^n X(s)$	What is the impu	lse resj [ponse of]]
A) $e^{-2t} u(t)$ 12. $X(s) = L[x(t)]$	 B) 2/(s+2) unction of an 1 B) u(t-2) , then L{dⁿ/dt 	C) $1/(s+2)$ LTI system is g C) $\delta(t-2)$ ⁿ x(t)} is	D) $2s/(1+2s)$ given by $H(s) = e^{-2s} . V$ D) $e^{2t} u(t)$	What is the impu	lse resj [ponse of]]
A) $e^{-2t} u(t)$	B) 2/(s+2) unction of an B) u(t-2)	C) 1/(s+2) LTI system is g C) δ(t-2)	D) $2s/(1+2s)$ given by $H(s) = e^{-2s} . V$ D) $e^{2t} u(t)$	What is the impu	lse resj	ponse of]
the system	B) 2/(s+2) unction of an	C) 1/(s+2) LTI system is g	D) $2s/(1+2s)$ given by $H(s) = e^{-2s}$.	What is the impu	lse resj	ponse of]
41 - a arrata <i>r</i> ra	B) 2/(s+2) unction of an 1	C) 1/(s+2) LTI system is s	D) $2s/(1+2s)$ given by $H(s) = e^{-2s}$.	Vhat is the impu	lse res	ponse of
11. The transfer f	B) 2/(s+2)	C) 1/(s+2)	D) 2s/(1+2s)		L	
A) 1/(1+2s)				L		
function is		system starting	, nom rost is given by]	ie truibit
10 The unit step \cdot	response of a	system starting	from rest is given by	$c(t) = 1 - e^{-2t}$ for	t>0 Tł	ne transfe
A) $\mathbf{X}(\mathbf{s})/\mathbf{s}$	$\frac{1}{R} X(s)$	$\mathbf{C} \in \mathbf{X}(\mathbf{e})$	\mathbf{D}) $\mathbf{X}(\mathbf{s})$		L	1
A) u (l) 9 Laplace transfo	\mathbf{D} \mathbf{u} (\mathbf{l})	(t)	D) NUIE		Г	1
o. The convolutio $A) u^{2}(t)$	$\frac{11}{10} \frac{10}{10} 10$	(1) t^{2} (t)	D) None		l]
A) $y(t)$	B) $O(t)$	C) $h(t)$	D) None		l r	J
/. The impulse rea	sponse of a sy	$r = \frac{1}{2} $	Then the input is $\delta(t)$,	the output y(t) w	ill be	1
A) Kising exp	B) D	ecaying exp	C) Step	D) Parabolic	.11 1	
6. The Impulse re	sponse of RL	circuit is			L	J
A) $\omega/(s+a)^2+\omega$	\mathfrak{d}^2 B) \mathfrak{d}	$/(s-a)^2+\omega^2$	C) $\omega/(s-a)^2 - \omega^2$	D) $\omega/(s+a)^2$ -	ω ²	
5. Laplace transfo	$rm of a e^{-at} su$	not is				J
A) $2/s^{2}(s+2)$	B) 2/	$(s+2)^2$	C) $2/(s+2)^3$	D) $2s/(s+2)^3$	l]
4. The output of a	linear system	to a unit step: $(2^{2})^{2}$	input u(t) is $t^2 e^t$ the s	system function I	H(s) is	
A) $-1/s^{2}(s+2)$	B) -1	$/s^{2}(s-2)$	C) $1/s^2(s-2)$	D) 1/s(s-2)		
3. What is the Lap	place transform	$m \text{ of } \mathbf{x}(t) = e^{-2t} \mathbf{u}$	u(t) *tu(t)		[]
A) 1	B) 0		C) e ^{-s}	D) s		
2. What is the Lap	place transform	m of a delayed	unit impulse function	δ(t-1)	[]
A) $\lim_{s\to\infty} sX(s)$	B) $\lim_{s\to 0} sX(s)$) C) $\lim_{s\to\infty} X(s)$	$(s D) \lim_{s \to 0} X(s)/s$			
is given by					L	J
				$t \to \infty$		

14. Poles of the a Laplace transform are those complex points at which the transfer function will be						
				[]	
A) 0	B) 1	C) ∞	D) None			
15. The Z transform of c	onjugation x*(n) is			[]	
A) X*(z*)	B) X*(z	C) X(z*)	D) None			
16. The Z transform of n	nultiplication of nx(n)	is	[]		
A) z d/dz X(z)	B) -z d/dz X(z	C) -z $\int X(z)$	D) $z \int X(z)$			
17. The Z transform of t	ime shifting of a x(n-m) is		[]	
A) $z^m X(z)$	B) $z^m/X(z)$	C) z - ^m $X(z)$	D) z- ^m /X(z)			
18. Z transform of time	function $\sum_{k=0}^{\infty} \delta(n-k)$) is		[]	
A) (z-1)/z	B) $z/(z-1)^2$	C) z/ (z-1)	D) (z-1) ² /z			
19. Z transform F(z)func	ction of function f(nT)	$= a^{n}T$		[]	
A) $z/(z-a^T)$	B) $z/(z+a^T)$	C) z/(z-a ^{-T})	D) $z/(z+a^{-T})$			
20. The ROC of the Z tra	ansform of a unit step f	function		[]	
A) z >1	B) z <1	C) Re(Z)>0	D) Re(Z)<0			
21. If $x(n)$ and $X(z)$ are t	he Z transform pair, Z	transform of	$\sum_{k=-\infty}^{\infty} x(n-k)$ is	[]	
A) $z^{-k}X(z)$	B) z^{-k} C) $\sum_{k=1}^{\infty}$	$z_{z-\infty} z - kX(z)$	D) $\sum_{k=-\infty}^{\infty} z - k$			
22. The only signal who	se ROC is entire z-plar	ne is		[]	
A) $\delta(n)$ B) $u(n)$	n) C) r(n)	D) none				
23. Unilateral Z transfor	m of x(n) is equivalent	to bilateral Z t	ransform of	[]	
A) $x(n)u(n-1)$ B) $x(n)u(n-1)$ B) $x(n)u(n-1)$	$h(n) = C \delta(n)$	D) x(n-1)u(n-	-1)			
24. DTFT is a special ca	se of			[]	
A) Z transform	B) Laplace transform	n C) CT	TFT D) None			
25. ROC is defined as a	range values of z for w	hich X(z)		[]	
A) Converges	B) Divergence	C) zero	D) Infinity			
26. The ROC of a causal	stable system must in	clude the		[]	
A) origin	B) Infinity	C) Ring	D) Unit circle			
27. Z transform of $x(n)$ i	s the DTFT of			[]	
A) $x(n)r^{-n}$	B) $x(n)r^n$	C) x(n)u(n)	D) $x(n)r(n)$			
28. The Z transform of t	he signal x(n-2) is			[]	
A) $z^4/(z^2-16)$	B) $(z+2)^2/(z+2)^2-16$	C) 1/(z ² -16)	D) $(z-2)^2/(z+2)^2-16$			

QUESTION	BANK	2020
29. If x(n) is right sided, X(z) has a signal pole and $x(0)=2$, $x(2)=\frac{1}{2}$ then x(n) is]	1
A) $u(-n)/2^{n-1}$ B) $u(n)/2^{n-1}$ C) $u(-n)/2^{n+1}$ D) $u(n)/2^{n+1}$	1	-
30. The Z transform $\delta(n)$ is	[]
A) -1 B) 0 C) 1 D) ∞		
31. In the z-plane ROC of Z transform $X(z)$ consist of	[]
A) Strips B) Parabola C) Rectangle D) Ring		
32. ROC does not contain any	[]
A) Poles B) Zeros C) Ones D) None		
33. Z transform of unit step sequence is	[]
A) $z/(z-1)$ B) $z/(z-1)^2$ C) $z/(z-1)$ D) $(z-1)^2/z$		
34. Mapping $z=e^{st}$ from s-plane to z-plane is	[]
A) one to one B) many to one C) one to many D) many to	many	
35. Z transform of time function $\sum_{k=0}^{\infty} \delta(n-k)$ is	[]
A) $(z-1)/z$ B) $z/(z-1)^2$ C) $z/(z-1)$ D) $(z-1)^2/z$		
36. Z transform $F(z)$ function of function $f(nT) = a^nT$	[]
A) $z/(z-a^{T})$ B) $z/(z+a^{T})$ C) $z/(z-a^{-T})$ D) $z/(z+a^{-T})$		
37. The ROC of the Z transform of a unit step function is	[]
A) $ z >1$ B) $ z <1$ C) $Re(Z)>0$ D) $Re(Z)<0$		
38. If x(n) and X(z) are the Z transform pair, Z transform of $\sum_{k=-\infty}^{\infty} x(n-k)$ is	[]
A) $z^{-k}X(z)$ B) z^{-k} C) $\sum_{k=-\infty}^{\infty} z - kX(z)$ D) $\sum_{k=-\infty}^{\infty} z - k$		
39. The Z transform of the signal $x(n-2)$ is	[]
A) $z^{4}/(z^{2}-16)$ B) $(z+2)^{2}/(z+2)^{2}-16$ C) $1/(z^{2}-16)$ D) $(z-2)^{2}/(z+2)^{2}-16$		
40. If $x(n)$ is right sided, $X(z)$ has a signal pole and $x(0)=2$, $x(2)=\frac{1}{2}$ then $x(n)$ is	[]
A) $u(-n)/2^{n-1}$ B) $u(n)/2^{n-1}$ C) $u(-n)/2^{n+1}$ D) $u(n)/2^{n+1}$		

Prepared by: C. PRASAD